Dr Anna Herasimtschuk

Imperial College London
Therapeutic immunisation in conjunction with IL-2, GM-CSF and rhGH improves CD4 T-cell counts and reduces immune activation in cART-treated HIV-1+ patients: a phase I clinical study

Anna Herasimtschuk
Department of Medicine
Imperial College London
Chelsea and Westminster Hospital
Immunotherapy and HIV-1

- Combination antiretroviral therapy (cART) in the context of HIV-1 infection
 - controls viral replication and leads to an increase in CD4 T-cell count
- Immune defects persist
 - T-cell numbers in the gut are not fully recovered
 - therapy interruption leads to a rapid rebound in HIV-1 viraemia
 - abnormal levels of immune activation and inflammation persist
 - HIV-1-specific T-cell functionality is not fully recovered
 - viral reservoirs persist – in central and transitional memory CD4 T cells
- Immune-based therapy (IBT) in treated, chronic HIV-1 infection
 - aims to improve the immune system to control the virus
 - there is the potential for IBT to improve HIV-1-specific T-cell responses and deplete viral reservoirs
Study design

Dosage information:
- FIT Biotech DNA clade B vaccine 1mg/ml, 10 x 100μl intradermal injections
- IL-2 5 x 10^6 Units subcutaneously, twice a day, eight hours apart
- GM-CSF 150μg subcutaneously, once daily, four hours from the IL-2
- rhGH 4mg/day subcutaneously, once daily

<table>
<thead>
<tr>
<th>Week</th>
<th>Screen X 2</th>
<th>0 (Days 8-12)</th>
<th>2 (Days 14-18)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm 1 n = 3</td>
<td>FIT Vaccine</td>
<td>IL-2 + GM-CSF</td>
<td>rhGH</td>
<td>FIT Vaccine</td>
</tr>
<tr>
<td>Arm 2 n = 4</td>
<td>FIT Vaccine</td>
<td>IL-2 + GM-CSF</td>
<td>rhGH</td>
<td>FIT Vaccine</td>
</tr>
<tr>
<td>Arm 3 n = 5</td>
<td>IL-2 + GM-CSF</td>
<td>rhGH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Arm 1: FIT Vaccine, rhGH
- Arm 2: FIT Vaccine, rhGH
- Arm 3: IL-2 + GM-CSF, rhGH
DNA clade B vaccine (FIT Biotech)
- therapeutic vaccines aim to induce the recovery of HIV-1-specific responses
 - plasmids contained structural and regulatory HIV-1 genes
 - elicit both CD4 and CD8 T-cell responses against the proteins that these genes encode

Interleukin-2 (IL-2)
- induces T-cell proliferation
- increases CD4 T-cell numbers (in the context of HIV-1 infection)
 - although no long-term clinical benefits have been reported
- IL-2 given during the antigen-specific T-cell contraction phase
 - preserves and maintains clinically relevant responses
 - in this study IL-2 was administered following therapeutic immunisation

Aim: to enhance and sustain the response following antigenic stimulation
Study drugs and timing of administration

- Granulocyte-macrophage colony-stimulating factor (GM-CSF)
 - allows further immune reconstitution in the periphery
 - improves antigen presentation by cells of the monocytic lineage to generate fully functional HIV-1-specific CD4 and CD8 T-cell responses

- Recombinant human growth hormone (rhGH)
 - has been used to treat HIV-1-associated lipodystrophy
 - increase thymic activity/output
 - reduce immune activation
 - enhance HIV-1-specific T-cell responses

Overall aim: to steer the immune system away from an anergic/unresponsive profile, to increase the naïve T-cell pool, and to control/eradicate the virus
Eligibility criteria

Randomised, open-label, phase I immunotherapeutic study

- Chronically infected with HIV-1
- On stable long-term cART
- Undetectable plasma viral load (<50 copies/ml)
- CD4 T-cell count >400 cells/mm³
- Not receiving nor have received immunomodulatory drugs or immunisation

Out of 93 patient referrals and 21 screen visits, 12 patients that met the eligibility criteria were enrolled onto the trial
Baseline patient characteristics

<table>
<thead>
<tr>
<th>Patient short code</th>
<th>Group</th>
<th>Graph symbol</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Clade of infection</th>
<th>Length of time since diagnosis (months)</th>
<th>Duration of cART (months)</th>
<th>cART regimen</th>
<th>CD4 T-cell count (cells/mm³)</th>
<th>Plasma viral load at baseline (copies/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R771</td>
<td>1</td>
<td>●</td>
<td>64</td>
<td>M</td>
<td>B</td>
<td>160.13</td>
<td>139.05</td>
<td>FTC+TFV+EFV</td>
<td>391</td>
<td>884</td>
</tr>
<tr>
<td>B784</td>
<td>1</td>
<td>●</td>
<td>40</td>
<td>M</td>
<td>B</td>
<td>99.25</td>
<td>98.95</td>
<td>FTC+TFV+EFV</td>
<td>80</td>
<td>1332</td>
</tr>
<tr>
<td>G739</td>
<td>1</td>
<td>●</td>
<td>43</td>
<td>M</td>
<td>B</td>
<td>141.61</td>
<td>113.15</td>
<td>FTC+TFV+EFV</td>
<td>227</td>
<td>534</td>
</tr>
<tr>
<td>P087</td>
<td>2</td>
<td>■</td>
<td>50</td>
<td>M</td>
<td>B</td>
<td>172.95</td>
<td>162.75</td>
<td>FTC+TFV+EFV</td>
<td>210</td>
<td>731</td>
</tr>
<tr>
<td>C789</td>
<td>2</td>
<td>■</td>
<td>29</td>
<td>M</td>
<td>B</td>
<td>20.75</td>
<td>12.20</td>
<td>FTC+TFV+EFV</td>
<td>309</td>
<td>535</td>
</tr>
<tr>
<td>L043</td>
<td>2</td>
<td>■</td>
<td>47</td>
<td>M</td>
<td>B</td>
<td>90.69</td>
<td>45.87</td>
<td>FTC+TFV+EFV</td>
<td>303</td>
<td>782</td>
</tr>
<tr>
<td>C319</td>
<td>2</td>
<td>■</td>
<td>48</td>
<td>M</td>
<td>B</td>
<td>229.05</td>
<td>80.03</td>
<td>FTC+TFV+ETV</td>
<td>93</td>
<td>1077</td>
</tr>
<tr>
<td>F810</td>
<td>3</td>
<td>▲</td>
<td>50</td>
<td>M</td>
<td>B</td>
<td>233.41</td>
<td>193.54</td>
<td>FTC+TFV+NVP</td>
<td>166</td>
<td>582</td>
</tr>
<tr>
<td>O523</td>
<td>3</td>
<td>▲</td>
<td>53</td>
<td>F</td>
<td>C</td>
<td>84.10</td>
<td>62.89</td>
<td>FTC+TFV+ETR</td>
<td>284</td>
<td>892</td>
</tr>
<tr>
<td>S648</td>
<td>3</td>
<td>▲</td>
<td>52</td>
<td>M</td>
<td>B</td>
<td>300.39</td>
<td>158.43</td>
<td>TFV+DRV+RTV</td>
<td>227</td>
<td>578</td>
</tr>
<tr>
<td>C241</td>
<td>3</td>
<td>▲</td>
<td>47</td>
<td>M</td>
<td>B</td>
<td>144.23</td>
<td>87.18</td>
<td>FTC+TFV+DRV+RTV</td>
<td>180</td>
<td>466</td>
</tr>
<tr>
<td>P054</td>
<td>3</td>
<td>▲</td>
<td>33</td>
<td>M</td>
<td>B</td>
<td>40.80</td>
<td>28.80</td>
<td>FTC+TFV+EFV</td>
<td>200</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td></td>
<td></td>
<td>219</td>
<td>757</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IQR: 42-51</td>
<td></td>
<td></td>
<td>177-567</td>
<td>289-886</td>
</tr>
</tbody>
</table>

IQR – interquartile range; FTC – emtricitabine; TFV – tenofovir; EFV – efavirenz; NVP – nevirapine; ETR – etravirine; DRV – darunavir; RTV – ritonavir.
Changes in CD4 T-cell count and ratio

Group 1, n = 3; group 2, n = 4; group 3, n = 5. Plots show changes from baseline.
Changes in T-cell function

IFN-γ production in response to HIV-1 Gag

IL-2 production in response to HIV-1 Gag

IFN-γ production in response to HIV-1 Tat
Changes in T-cell phenotype

CD4 T-cell activation

- Group 1 - Vaccine + IL-2/GM-CSF + rhGH
- Group 2 - Vaccine only
- Group 3 - IL-2/GM-CSF + rhGH

CD8 T-cell activation

CD4 T-cell exhaustion

CD8 T-cell exhaustion

- CD4+PD-1+ T-cell exhaustion
- CD8+PD-1+ T-cell exhaustion
Summary

- Minor blips in HIV-1 plasma viral load occurred
 - could not be attributed to a particular treatment group or study time point
 - the majority were <100 copies/ml and all undetectable at week 48

- Overall, the study drugs were well-tolerated

- Patients in all study groups showed reductions in PD-1 expression at week 48, indicating a reversal of the exhausted T-cell phenotype
 - potentially an effect of an additional 48 weeks cART

- Patients in group 1 (received vaccine, IL-2, GM-CSF, rhGH) showed:
 - increased numbers of CD4 T cells
 - improved CD4/CD8 T-cell ratios
 - increased IFN-γ production in response to HIV-1 Gag and Tat
 - increased IL-2 production in response to HIV-1 Gag
 - reduced expression of the activation marker CD38 on T cells
Future work

- Further analysis of cryopreserved samples to include:
 - quantification of HIV-1 proviral DNA
 - measurement of differentiation, activation and exhaustion markers on virus-specific T cells (using multimer technology)
 - assessment of polyfunctionality at key study time points
 - elucidation of the preservation of the functional response after 48 weeks – recall patients

Such therapeutic strategies should not only induce but maintain these benefits (increased CD4 T-cell numbers, enhanced T-cell functionality and reversal of defective immunophenotypes); ideally accompanied by a depletion of the viral reservoir
Acknowledgements

Imperial College London
Nesrina Imami
Jocelyn Downey
Frances Gotch

FIT Biotech
Rein Sikut
Maarja Adojaan
Ioana Stanescu

St Stephen’s AIDS Trust
Mark Nelson
Graeme Moyle
Akil Jackson
Chris Higgs
Sundhiya Mandalia
Gary Lo

Merck Serono
Richard Coles
Harriet Chronis

This work was supported by funding from the MRC (Grant number: G0501957), Westminster Medical School Research Trust and St Stephen’s AIDS Trust. We are grateful to the patients who took part in the study.
British HIV Association
BHIVA

19th Annual Conference of the British HIV Association (BHIVA)

16–19 April 2013

Manchester Central Convention Complex