TREATMENT AS PREVENTION FOR HCV AMONG HIV-POSITIVE MSM: MODELING DATA

Natasha Martin, DPhil

Associate Professor, Division of Global Public Health, UC San Diego

Honorary Senior Lecturer, School of Social and Community Medicine, University of Bristol
DISCLOSURES

I have received research grants from Gilead unrelated to this work and honoraria from AbbVie, Gilead, and Jannsen.
HCV TREATMENT AS PREVENTION?

- Modelling indicates HCV treatment for people who inject drugs may prevent onwards transmission and reduce prevalence/incidence$^{1-3}$....

What about HCV treatment as prevention among HIV-positive MSM?

TREATMENT AS PREVENTION AMONG PWID VS HIV+ MSM

<table>
<thead>
<tr>
<th></th>
<th>HCV+ PWID</th>
<th>HIV+/HCV+ MSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>Large (50-100k in UK)</td>
<td>Small compared with PWID (3-4k in UK)</td>
</tr>
<tr>
<td>HCV prevalence</td>
<td>Heterogeneous, but can be high (>60%)</td>
<td>Relatively low (~10%)</td>
</tr>
<tr>
<td>Routine testing and HCV treatment integrated with other treatment settings</td>
<td>Poor/evolving</td>
<td>Good in many developed country settings (~50% treatment experienced in Berlin¹ & UK²)</td>
</tr>
<tr>
<td>Next-generation DAA SVR for chronic infection</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Evidence for other prevention/behaviour change interventions</td>
<td>Good (opiate substitution therapy, needle/syringe programmes)</td>
<td>Poor</td>
</tr>
<tr>
<td>International transmission network</td>
<td>Probably minimal in most settings</td>
<td>High</td>
</tr>
<tr>
<td>Reinfection rate</td>
<td>Appears lower than primary incidence</td>
<td>Appears higher (5-10x) than primary incidence</td>
</tr>
</tbody>
</table>

2. Martin NK et al (submitted)
HCV AMONG HIV-POSITIVE MSM: UK EPIDEMIOLOGY
CUMULATIVE PREVALENCE (AB+ OR RNA+) OF HCV AMONG HIV-POSITIVE MSM IN UK CHIC

<table>
<thead>
<tr>
<th>Year</th>
<th>Total number MSM under follow-up in that year in UK CHIC</th>
<th>% with a HCV test reported by end of that year</th>
<th>Cumulative number HCV positive (Ab+ or RNA+)</th>
<th>Cumulative HCV prevalence (Ab+ or RNA+) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>11012</td>
<td>61.51</td>
<td>492</td>
<td>7.26</td>
</tr>
<tr>
<td>2005</td>
<td>11765</td>
<td>71.38</td>
<td>641</td>
<td>7.63</td>
</tr>
<tr>
<td>2006</td>
<td>12335</td>
<td>77.42</td>
<td>752</td>
<td>7.87</td>
</tr>
<tr>
<td>2007</td>
<td>12895</td>
<td>83.82</td>
<td>896</td>
<td>8.29</td>
</tr>
<tr>
<td>2008</td>
<td>13262</td>
<td>88.97</td>
<td>1049</td>
<td>8.89</td>
</tr>
<tr>
<td>2009</td>
<td>13693</td>
<td>92.07</td>
<td>1195</td>
<td>9.48</td>
</tr>
<tr>
<td>2010</td>
<td>14147</td>
<td>94.50</td>
<td>1293</td>
<td>9.67</td>
</tr>
<tr>
<td>2011</td>
<td>13101</td>
<td>97.62</td>
<td>1261</td>
<td>9.86</td>
</tr>
</tbody>
</table>

6 Martin NK, Thornton A et al, under review
INCIDENCE OF HCV SEROCONVERSION AMONG HIV-POSITIVE MSM IN UK CHIC

<table>
<thead>
<tr>
<th>Year</th>
<th>Person years of follow-up of those HCV Ab negative</th>
<th>New infections</th>
<th>Incidence per 100 person years of follow-up (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1454</td>
<td>15</td>
<td>1.03 (0.58-1.70)</td>
</tr>
<tr>
<td>2005</td>
<td>4179</td>
<td>51</td>
<td>1.22 (0.91-1.60)</td>
</tr>
<tr>
<td>2006</td>
<td>6076</td>
<td>62</td>
<td>1.02 (0.78-1.31)</td>
</tr>
<tr>
<td>2007</td>
<td>7484</td>
<td>103</td>
<td>1.38 (1.12-1.67)</td>
</tr>
<tr>
<td>2008</td>
<td>8752</td>
<td>106</td>
<td>1.21 (0.99-1.46)</td>
</tr>
<tr>
<td>2009</td>
<td>9405</td>
<td>111</td>
<td>1.18 (0.97-1.42)</td>
</tr>
<tr>
<td>2010</td>
<td>9782</td>
<td>101</td>
<td>1.03 (0.84-1.25)</td>
</tr>
<tr>
<td>2011</td>
<td>7487</td>
<td>80</td>
<td>1.07 (0.85-1.33)</td>
</tr>
</tbody>
</table>

Martin NK, Thornton A et al, under review
TREATMENT AS PREVENTION AMONG MSM IN THE UK- MODELLING
MODELLING AIMS

- Develop a **dynamic** mathematical model of HCV transmission among diagnosed HIV+ MSM (but include additional infections from outside diagnosed HIV+ MSM population)

- Fit model to available UK data to
 - Assess the possible trajectory of the HCV epidemic among MSM with current levels of treatment
 - Predict the impact of scaled-up treatment with new DAAs among MSM to reduce transmission to low levels
Reinfection

Infection

HCV uninfected (Ab-/RNA-)

Acute HCV, spontaneous clearance (undiagnosed)

Early HCV (<1 yr from infection), undiagnosed

New diagnosed HIV-positive MSM

Chronic HCV (>1 yr from infection), undiagnosed

Susceptible, treatment naïve (Ab+/RNA-)

Early HCV (<1 yr from infection), Diagnosed

Diagnosed yr 1

Acute HCV, spontaneous clearance (undiagnosed)

Early (“acute”) treatment

Treatment failure

Susceptible, treatment experienced

Chronic, Diag yr 2+

Chronic treatment

Also stratify by treatment naïve, IFN experienced, DAA experienced and low/high risk

HIV and non-HIV death occurs from all states

Martin NK, Thornton A et al, under review
MODEL PARAMETERISATION AND CALIBRATION

- Parameters (means presented; varied from distributions)
 - 15% spontaneous clearance rate [UK CHIC]
 - 46%/22% treated within 1 year of an acute/chronic diagnosis, respectively, and 6%/yr thereafter [UK CHIC]
 - 80%/30% SVR in acute/chronic stage with IFN/RBV, 90% with DAAs

- Calibrated to UK data on
 - Size of HIV-diagnosed MSM population over time
 - Annual HCV prevalence and primary incidence among diagnosed HIV+ MSM 2004-2011 (UK CHIC)
 - HCV reinfection incidence among HIV+ MSM (7.8/100py 2004-2012)²
 - Proportion HCV treatment experienced (43%, UK CHIC)

1. Nakagawa et al. AIDS. 2012;26(3):335-43
MODEL FITS TO EPIDEMIOLOGICAL DATA
MODEL CALIBRATION: HCV PREVALENCE (AB+ OR RNA+) AMONG HIV-DIAGNOSED MSM IN UK

HCV prevalence (Ab+ or RNA+) among HIV-diagnosed MSM (%)

Black diamonds: UK CHIC data

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
MODEL CALIBRATION: HCV PRIMARY INCIDENCE AMONG HIV-DIAGNOSED MSM IN UK

Black diamonds: UK CHIC data

HCV primary incidence among HIV-diagnosed MSM (per 100 person-years)

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
POPULATION ATTRIBUTABLE RISK
IMPORTANCE OF THE HIGH RISK GROUP

• Over the next decade, **94% of infections** are attributable to high-risk individuals, comprising **7% of the population**.

• Consistent with the proportion of HIV-positive MSM in the UK reporting injecting drug use or methamphetamine use in the previous 4 weeks.

• These high-risk individuals contribute **over one-third of prevalent and incident infections in 2015**.

Martin NK, Thornton A et al, under review
MODEL PROJECTIONS TO 2025
STATUS QUO (CURRENT TREATMENT RATES AND SVR WITH IFN/RBV)- MEAN MODEL FIT SHOWN

CHRONIC PREVALENCE

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM(%)

HCV primary incidence among HIV-diagnosed MSM (/100py)

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
NO HISTORIC TREATMENT IN UK

CHRONIC PREVALENCE

PRIMARY INCIDENCE

No historic treatment

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM (%)

HCV primary incidence among HIV-diagnosed MSM (/100py)

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
CURRENT TREATMENT RATE WITH DAAS (90% SVR) FROM 2015

CHRONIC PREVALENCE

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM(%)

Current treatment with DAAs

CURRENT TREATMENT RATE WITH DAAS (90% SVR) FROM 2015

HCV primary incidence among HIV-diagnosed MSM (/100py)

Current treatment with DAAs

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
SCALE-UP TREATMENT FOR RECENT (80%) DIAGNOSES WITH DAAS FROM 2015

CHRONIC PREVALENCE

PRIMARY INCIDENCE

Scale-up treatment for recent diagnoses

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
SCALE-UP TREATMENT FOR RECENT (80%) & NONRECENT DIAGNOSES (20%/YR) WITH DAAS FROM 2015

CHRONIC PREVALENCE

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM (%)

Scale-up treatment for recent AND nonrecent diagnoses

PRIMARY INCIDENCE

HCV primary incidence among HIV-diagnosed MSM (/100py)

Scale-up treatment for recent AND nonrecent diagnoses

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
SCALE-UP TREATMENT FOR RECENT & NONRECENT DIAGNOSES AND 20% BEHAVIOURAL RISK REDUCTION FROM 2015

CHRONIC PREVALENCE

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM (%)

Scale-up treatment AND behaviour change

PRIMARY INCIDENCE

HCV primary incidence among HIV-diagnosed MSM (/100py)

Scale-up treatment AND behaviour change

Martin NK, Thornton A et al, under review
Martin NK et al EASL 2015
SUSTAINED INCIDENCE EVEN IF TREAT ALL CIRRHOTICS (NO ACUTES)

CHRONIC PREVALENCE

HCV chronic (RNA+) prevalence among HIV-diagnosed MSM (%)

PRIMARY INCIDENCE

HCV primary incidence among HIV-diagnosed MSM (100py)
INCREASING TREATMENT NUMBERS OVER TIME DUE TO EXPANDING EPIDEMIC, EVEN WITH STABLE TREATMENT RATES

Mean number HCV treatments for HIV-infected MSM per year

- Current treatment rate with IFN/RBV SVR
- Current treatment rate with DAAs (90% SVR) from 2015

Martin NK, Thornton A et al, under review
HIGHER TREATMENT RATES ONLY RESULT IN GREATER TREATMENT NUMBERS FOR 5-7 YEARS

Higher treatment numbers in beginning

Lower treatment numbers in 5-7 yrs

Martin NK, Thornton A et al, under review
TREATMENT AS PREVENTION AMONG MSM IN SWITZERLAND- MODELLING
HCV AMONG HIV+ MSM IN SWITZERLAND: ELIMINATION REQUIRES BEHAVIOUR CHANGE

HCV incidence: data

Model projected HCV incidence: behaviour change scenarios

Salazar L et al. CROI 2015
HCV AMONG HIV+ MSM IN SWITZERLAND: ELIMINATION REQUIRES BEHAVIOUR CHANGE

HCV incidence: data

Model projected HCV incidence: behaviour change scenarios

Salazar L et al. CROI 2015
HCV AMONG HIV+ MSM IN SWITZERLAND: ELIMINATION REQUIRES BEHAVIOUR CHANGE

HCV incidence: data

Model projected HCV incidence: behaviour change scenarios

Salazar L et al. CROI 2015
CONCLUSIONS:
HCV TREATMENT AS PREVENTION AMONG MSM IN EUROPE

• Expanding epidemic of HCV among HIV+ MSM in UK and Switzerland

• Continued expansion or at best stabilization with current levels of treatment, even with DAAs

• Substantial reductions in incidence/prevalence with achievable scale-up, especially with behaviour change

• Limitations:
 • Neglect network effects and migration/travel; need better epidemiological and behavioural data
 • Modelling studies- need empirical studies evaluating HCV treatment as prevention (which incorporate modelling for design and evaluation)!
ACKNOWLEDGEMENTS

• Collaborators
 • Peter Vickerman, Matthew Hickman (University of Bristol)
 • Alicia Thornton, Caroline Sabin, Huw Price (UCL)
 • Valerie Delpech (Public Heath England)
 • Murad Ruf (Gilead Sciences)
 • Mark Nelson (Chelsea and Westminster Hospital)
 • Thomas Martin (Kings College London)
 • Graham Cooke, Emma Thomson (Imperial College London)
 • Yusef Azad (National AIDS Trust)

This work is supported through a research grant from Gilead Sciences. Gilead had no influence on the design, analysis and content of the study.

• National Institute for Drug Abuse R01 DA037773-01A1, UCSD Center for AIDS Research (P30 AI036214), National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Evaluation of Interventions at University of Bristol, NIHR HPRU in STI & BBV at UCL. The UK CHIC study has received funding from the Medical Research Council. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.