An overview of basic science discoveries that will impact clinical practice

John Frater
University of Oxford
Expecting the unexpected.....

• Few scientific discoveries are predictable.
• In retrospect, many are obvious
 • At the time, not so.
 • The ‘black swans’
• This talk is about guessing where the next black swan will come from....
The funky stuff......

• Single Cell Technologies
• Gene Editing
• Manipulating Immunity
Single Cell Technology – Lab on a Chip
SPERMBOT
THE MICROFLUIDICS REVOLUTION

Today:
100ul
Single reaction tube

Vs

Tomorrow
1 picolitre
1000s of reactions per second
Lab-on-a-Chip Microfluidics

• Massive scaling up of capacity
• Reactions occur at picolitre volumes, thousands of times
• Greater sensitivity
• Fast – 1000s of experiments per second
 • Great for screening 10,000s of drug compounds – fast and less reagents
• Ability to study very rare cell populations
• Ability to carry out complex processes without massive lab facilities
 • PCR, qPCR, Cell sorting, Bacterial culture....
Applications

• Revolutionise PoC bedside diagnostics and monitoring
• Revolutionise single cell research
 • Clinical algorithms for patient stratification
• Massive opportunities for understanding:
 • HIV immunity,
 • drug discovery,
 • vaccine design
 • Latency and the reservoir
The funky stuff......

• Single Cell Technologies
• Gene Editing
• Manipulating Immunity
The Berlin Patient – over 5 years ago........
<table>
<thead>
<tr>
<th>Location of Transplantation</th>
<th>Age of Patient (yr)</th>
<th>Type of Cancer</th>
<th>Type of Graft</th>
<th>Outcome after Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin†</td>
<td>40</td>
<td>Acute myeloid leukemia</td>
<td>HLA-matched unrelated</td>
<td>Alive after 7 yr, no viral rebound, no ART</td>
</tr>
<tr>
<td>Utrecht, the Netherlands‡</td>
<td>53</td>
<td>Myelodysplastic syndrome</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of myelodysplastic syndrome and pneumonia after 2 mo</td>
</tr>
<tr>
<td>Münster, Germany§</td>
<td>51</td>
<td>Non-Hodgkin's lymphoma</td>
<td>HLA-mismatched unrelated</td>
<td>Died from infection after 4 mo</td>
</tr>
<tr>
<td>Essen, Germany¶</td>
<td>30</td>
<td>Non-Hodgkin's lymphoma</td>
<td>HLA-matched unrelated</td>
<td>Died from CXCR4-tropic HIV-1 rebound, died from relapse of non-Hodgkin's lymphoma after 12 mo</td>
</tr>
<tr>
<td>Minneapolis§</td>
<td>12</td>
<td>Acute lymphoblastic leukemia</td>
<td>Umbilical-cord blood</td>
<td>Died from GVHD after 3 mo</td>
</tr>
<tr>
<td>Santiago, Chile§</td>
<td>46</td>
<td>Non-Hodgkin's lymphoma</td>
<td>HLA-matched related</td>
<td>Died from pneumonia shortly afterward</td>
</tr>
<tr>
<td>Barcelona§</td>
<td>37</td>
<td>Non-Hodgkin's lymphoma</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of non-Hodgkin's lymphoma after 3 mo</td>
</tr>
</tbody>
</table>
Can we inactivate HIV proviral DNA in latently infected cells?

4 gene editing techniques:

- **Cre recombinase**
 - Site-specific recombinase from bacteriophage enables precise genome editing by recombination between two DNA recognition sites (LoxP sites)

- **Zinc-finger nuclease**
 - Fusion proteins of nonspecific endonuclease cleavage domain of the FokI restriction enzyme with a custom-designed zinc-finger protein.

- **TALEN**
 - Transcription activator-like effector nuclease - from Xanthomonas TAL effector proteins

- **CRISPR-Cas9**
 - Most powerful gene-editing tool
“Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9)”

• CRISPR loci and Cas proteins are present in ~90% of archaea and ~50% of bacteria

• Evolved as a defense against viruses

• A flexible and precise gene-editing tool. Two components
 • a short guide RNA (gRNA) is used to direct the sequence-specific cleavage of a specific target DNA.
 • and an endonuclease (Cas9) that cleaves both strands of the target DNA.

• Successful binding of Cas9 to the target and subsequent endonucleolytic cleavage causes a double-strand break (DSB).

• Repair is by ‘Non Homologous End Joining’ (NHEJ)
THE PRINCIPLE OF CRISPR/Cas9
How to apply gene-editing to the clinic?

- Ex vivo
- In vivo
How can we utilise gene editing for HIV?

- *Ex vivo versus in vivo*
- Only *ex vivo* trialed so far for HIV:
 - Zn Finger nucleases
How can we utilise gene editing for HIV?

• **Ex vivo versus in vivo**

• Only *ex vivo* trialed so far for HIV:
 • Zn Finger nucleases

• Recent data in humanised mice not discouraging

• Next step...human clinical trials??
CRISPR in Clinical Trials

 • PD-1 to be targeted in patients with metastatic non-small cell lung Ca.
 • Similar study recently approved by NIH and FDA.

• Conditions under consideration:
 • Malaria
 • Muscular dystrophy
 • Retinitis pigmentosa
 • HIV
 •and others.
The funky stuff......

• Single Cell Technologies
• Gene Editing
• Manipulating Immunity
Biologics – Can we improve on Nature?

• **Phase 1: HIV-1-specific mAbs (Now)**
 • Monoclonal, broadly neutralising antibodies:
 • VRCO1, 3BNC117, α4β7 integrin

• **Phase 2: Engineered antibodies (Tomorrow)**
 • Dual-affinity re-targeting (DART) proteins
 • Bispecific T cell engagers (BiTES)
 • Chimeric Antigen Receptor (CAR) T cells
 • Immune-mobilizing monoclonal T-cell receptors against viruses (ImmTav)
• 24 participants with chronic infection.
 • 3 & 8 doses, overlapping TI.
• All rebound after TI – after 4 or 5.6 weeks (mean)
• Significant delay at 4 weeks vs historic controls. Lost by 8 weeks
• Rebound virus showed evidence of resistant variants
HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption

Johannes F. Scheid1,2*, Joshua A. Horwitz1*, Yotam Bar-On1, Edward F. Kreider3, Ching-Lan Lu1, Julio C. C. Lorenzi1, Anna Feldmann1, Malte Braunschweig1, Lillian Nogueira1, Thiago Oliveira1, Irina Shimeliovich1, Roshni Patel1, Leah Burke5, Yehuda Z. Cohen1, Sonya Hadriangan1, Allison Settler1, Maggi Witmer-Pack1, Anthony P. West Jr6, Boris Jueg7, Tibor Keler8, Thomas Hawthorne9, Barry Zingman9, Roy M. Gulick9, Nico Pfeifer4, Gerald H. Larm3, Michael S. Seaman10, Pamela J. Bjorkman6, Florian Klein1,11,12, Sarah J. Schlesinger1, Bruce D. Walker7,13, Beatrice H. Hahn3, Michel C. Nussenzweig1,14 & Marina Caskey1

July 2016

- N=13 with chronic HIV infection suppressed for >12 months
- Infusions of 3BNC117. TI 2 days later
- Up to 19 week delay in rebound vs historical controls (2.6 weeks)
- Rebound occurred with escape variants or once antibody levels had dropped
α4β7 integrin

- α4β7 integrin found on CD4 T cells & NK cells
- Mediates migration and retention of leucocytes in the gut.
- MAsCAM is natural ligand - constitutively expressed in the gut
- α4β7 integrin ‘high’ cells are preferentially infected by HIV
- Protection against mucosal transmission in SIV

- Question: Can monoclonals vs α4β7 integrin prevent viral rebound after TI?
Sustained virologic control in SIV+ macaques after antiretroviral and \(\alpha_4\beta_7\) antibody therapy

Siddappa N. Byrareddy,1,6† James Arthos,2,6 Claudia Cicala,2,6 Francois Villinger,1,3,6 Kristina T. Ortiz,1 Dawn Little,1 Nell Siddell,1 Maureen A. Kane,1 Jianshi Yu,1 Jace W. Jones,2 Philip J. Santangelo,2 Chiara Zurla,2 Lyle R. McKinnon,2,8 Kelly B. Arnold,6 Caroline E. Woody,6 Lutz Walter,9 Christian Roos,9 Angela Noll,9 Donald Van Ryk,9 Katija Jelicic,9 Raffaello Cimbro,10 Sanjeev Gumber,9 Michelle D. Reid,1 Volkan Adsay,1 Praveen K. Amancha,4 Ann E. Mayne,4 Tristram G. Parslow,1 Anthony S. Fauci,1,8 Aftab A. Ansari1,11

Oct 2016, Science

• SIVmac239 infected macaques received ART and mAb vs \(\alpha_4\beta_7\) integrin.

Post TI:
• CD4 T cell restoration in blood, gut and peripheral tissues
• Two never rebound, 6 blip but then control.
 • Now between 1-2 years without rebound.
• Mechanism unclear - ? related to IgG vs Gp120 V2
• NEXT: chronically-infected humans: N=15; Phase 1 trial with Vedolizumab then ATI; already recruiting.
Fig. 1 Control of plasma and GIT viral loads.

Fig. 3 Immuno-PET–CT analysis confirms the preservation of CD4+ cells.
Vedolizumab to Cure HIV

- Effective therapy in IBD
- Stops cells homing to the gut
- Induces SIV remission in macaques...
- Takeda working with NIH to conduct clinical trials in HIV in humans
- Mechanism unclear
 - Will know more later this year......
Phase 2: DARTs and BITEs

- ‘Dual-affinity re-targeting’ (DART) molecules
- ‘Bispecific T cell engagers’ (BiTEs)

- Provide additional cytotoxic functions (the kill) to the immune responses
- Blinatumomab (CD19xCD3 BiTE) was recently approved for the treatment of acute lymphoblastic leukemia
DARTS

• Dual-Affinity Re-Targeting (DART) molecules
 • Bind CD3 – pulling in T cells
 • Bind antigen
 • eg anti-Env IgG antibodies

• Increase target killing
• Improve on natural immunity
• Phase 1 trials in AML, lymphoma and colorectal cancer
CD32a
the holy grail of HIV infection???
March 2017

“Marker 1” revealed:

CD32a – another new target......
CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses

Benjamin Descours1,*, Gaël Petitjean1,*, José-Luis López–Zaragoza2,3,4, Timothée Bruel2,5, Raoul Raffel1, Christina Psomas6, Jacques Reynes6, Christine Lacabarat2,3,4, Yves Levy2,3,4, Olivier Schwartz2,5, Jean Daniel Lelievre2,3,4 & Monsef Benkirane1

The persistence of the HIV reservoir in infected individuals is a major obstacle to the development of a cure for HIV1–3. Here, using an \textit{in vitro} model of HIV-infected quiescent CD4 T cells, we reveal a gene expression signature of 103 upregulated genes that are specific enriched in inducible replication-competent proviruses and can be predominant in some participants. Our discovery that CD32a+ lymphocytes represent the elusive HIV-1 reservoir may lead to insights that will facilitate the specific targeting and elimination

March 15, 2017; Nature
CD32a identifies the CD4 T-cell HIV reservoir
If CD32a is a marker for the reservoir.....

- A biomarker for latent infection
- An opportunity to understand latency much better.
- A new lab test to assess cure-based interventions
-or even a new therapy: “anti-CD32a monoclonal antibody therapy”

“HIVCURIMAB”
Closing remarks

• The field of HIV has a track record translating basic science into clinical practice
• ART changes the questions faced by scientists and clinicians
• Work in HIV translates across to other fields (e.g. cancer) – and vice versa
• Time for a drink – look out for the black swans!

THANK YOU