

New Antiretrovirals and New Strategies

Saye Khoo

HIV Pharmacology Group

Declaration of Interests

•<u>www.hiv-druginteractions.org</u> & <u>www.hep-druginteractions.org</u> sponsorship from Janssen, ViiV, Abbott, Merck, BMS, Gilead, Boehringer, Vertex. Editorial content remains independent.

- •Research Grants: Merck, ViiV
- •Speakers bureau: Merck, Janssen, Abbott, Roche
- •Travel grants: Gilead, ViiV, BMS, Janssen
- •TaiLor trial (NIHR-funded)

Antiretroviral Stewardship

- when to start ?
- how to manage ?

- Minimise toxicity
- **Preserve options** •
- Normalise Immunity
- Equip for future co-morbidity

The end of AIDS: HIV infection as a chronic disease

Steven G Deeks, Sharon R Lewin, Diane V Havlir

New Drugs, New Formulations, New Strategies

Improvements on existing classes

- TAF
- dolutegravir and other integrases
- new NNRTIs MK1439

New Classes

• Maturation inhibitors, LEDGINS, etc

New Formulations

- nanoformulations
- mono- or dual therapy
- LA injections or implants
- targeting latent reservoirs

New Strategies

- NRTI-sparing, PI monotherapy
- targeting latent reservoirs
- targeting immune activation, cardiovascular risk
- etc

	INSTIS	NRTIS	Pls	NNRTIS	Other
Approved	Dolutegravir				
Phase 3		TAF	DRVc	Doravirine (MK1349) RPV-LA	TAF/FTC/EVGc Cenicriviroc BMS663068
Phase 2	GSK126744	Racivir Amodoxovir Elvucitabine			ABC/3TC/DTG TAF/FTC/DRVc

Doravirine (MK-1439)

Pharmacology

- Potent IC₉₅ ~19 nM (50% human serum)
- Once-daily dosing; T¹/₂ 10-16h
- P450 metabolism (CYP3A4/5)
 - No significant inhibition/induction of CYP P450s
 - No significant interaction with TDF
 - AUC **^**3.54; Cmin**^**2.91 fold with RTV (100mg bd)
- -Good Preclinical Safety Profile, no significant ECG changes

Potential advantages :

- Low rates of CNS toxicity
- Minimal interactions: enhanced compatibility with concomitant medications
- Enhanced potency against select NNRTI resistance mutations

≤ 3 fold potency shift against the most prevalent transmitted NNRTI mutant viruses (K103N, Y181C, G190A) [Feng M, ICAAC 2012]

MK-1439 Phase Ib Pharmacodynamics

Similar HIV-RNA decline for both doses vs. placebo at 7 days:

- 1.37 log₁₀ copies/mL at 25 mg daily dose
- 1.26 log₁₀ copies/mL at 200 mg daily dose

Anderson, M., et al., CROI 2013; Paper #100

MK-1439 Phase lb Pharmacokinetics

Mean Plasma Concentration Profiles for MK-1439 Following Administration to HIV-1 Infected Patients

- N = 6 patients per dose
- Pharmacokinetic profiles are comparable to healthy volunteers
- Steady state C_{24hr} concentrations exceeded the serum adjusted IC₉₅ of wild-type virus by 14-fold (25 mg) and 87-fold (200 mg)
- C_{24hr} accumulation ratio of 1.5- to 1.6-fold Anderson, M., et al., CROI 2013; Paper #100

GSK 126744

GSK1265744 (744)

- HIV-1 integrase inhibitor; dolutegravir analogue
- Oral drug ($t_{\frac{1}{2}}$ = 40 hours)
- Long-acting SC or IM injectable (apparent t_{1/2} = 21-50 days)
- Demonstrated >2.2 log₁₀ c/mL mean reduction in plasma HIV-1 RNA in 10-day monotherapy at 5 and 30 mg PO qd

GSK 126744 – LATTE Study

Margolis et al. EACS 2013 Abstr PS7/1

Should've gone to

Table 1B. HIV Treatment Pipeline, 2003–2013: Drugs Stopped or Stalled in Phase II/III

Generic Name (Acronym)	Sponsor	Last Active Year	Class					
Stopped in Phase III (3)								
capravirine (AG-1549)	Pfizer	2005	NNRTI					
vicriviroc (SCH 417690)	Schering	2010	CCR5I					
lersivirine (UK-453,061)	Pfizer	2013	NNRTI					
Stalled in Phase II (2)	Stalled in Phase II (2)							
PR0 140	Progenics/Cytodyn	2010	Al mAb					
ibalizumab (TNX-355)	Tanox/Biogen	2011	anti-CD4 mAb					
Stopped in Phase II (13)	-							
DPC-083 (AI-183)	BMS	2004	NNRTI					
PR0 542	Progenics	2004	Al mAb					
SCH-C	Schering	2004	CCR5RI					
calanolide A	Advanced L.S.	2005	NNRTI					
reverset (D-D4FC)	Incyte	2006	NRTI					
brecanavir	GSK	2007	PI					
alovudine (FLT)	Mefuvir Beijing	2008	NRTI					
BILR 355/r BS	BI	2008	NNRTI					
elvucitabine	Achillion	2008	NRTI					
racivir	Pharmasset	2008	NRTI					
amdoxivir (DAPD)	Gilead	2010	NRTI					
apricitabine	Avexa	2010	NRTI					
bevirimat (PA-457)	Panacos/Myriad	2010	AI					

HIV drug development (1987-2013)

* Beta-lactams include three groups sometimes identified as separate classes: penicillins, cephalosporins, and carbapenems.

- 14 new classes of antibiotics were introduced between 1935 1968
- Since then, only 5 have been introduced
- Since 1980, 75% new drugs in 2 classes- quinolones & ß lactams

Could this happen with HIV pipeline ?

- no new PI for past 6 years
- better compounds within class
- what new targets are being pursued ?

A neglected pathway of HIV infection ?

Journal of Virology

An HIV-1 Replication Pathway Utilizing Reverse Transcription Products That Fail To Integrate

Benjamin Trinité, Eric C. Ohlson, Igor Voznesensky, Shashank P. Rana, Chi N. Chan, Saurabh Mahajan, Jason Alster, Sean A. Burke, Dominik Wodarz and David N. Levy

- ≥90% HIV proviral DNA fails to integrate
- 1- and 2LTR circles assumed not to contribute to replicating pool
- Viral rebound following cessation of ART genetically match 2LTR circles
- Alternative, 'salvage' pathway of productive infection from unintegrated viral DNA
- Lasts several weeks, ?? Longer
- Requires Vpr
- Levels ~1 order of magnitude less than integrated proviral DNA

How important in clinical practice ?

Nanoformulations

What they can do:

- **1** Improve bioavailability of poorly absorbed compounds
- 2 Increase plasma half life eg through slow release IM injection -rilpivirine LA, GSK1265744
- 3 allow co-formulations, potentially tunable to match PK
- 4 target certain cells and tissues, eg monocyte-macrophages - conjugation to folate, magnetite
- 5 allow scale up through cheaper/less drugs, better co-formulations – lower doses, cheap manufacturing costs, high drug loading

Different Strategies - PI monotherapy

	PI monoth	nerapy	Combination t	herapy		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
1.1.1 Lopinavir							
Arribas 2005 (OK Pilot)	17	21	20	21	4.3%	0.85 [0.68, 1.07]	
Cahn 2011 (wk51.4)	39	41	36	39	17.3%	1.03 [0.92, 1.16]	+
Gutmann 2010 (MOST)	23	29	31	31	6.0%	0.80 [0.66, 0.97]	
Hasson 2011 (KAMON 2)	8	15	10	15	0.6%	0.80 [0.44, 1.45]	
Meynard 2010 (KALESOLO)	73	87	87	99	16.3%	0.95 [0.85, 1.07]	-
Nunes 2009 (KalMo wk 96)	24	30	26	30	4.3%	0.92 [0.74, 1.16]	
Pulido 2008 (OK04 wk48)	85	103	90	102	17.4%	0.94 [0.83, 1.05]	-=+
Waters 2008 (wk48)	18	26	22	28	2.2%	0.88 [0.64, 1.21]	
Subtotal (95% CI)		352		365	68.4%	0.94 [0.89, 1.00]	•
Total events	287		322				
Heterogeneity: Tau ² = 0.00; Ch	ni² = 6.99, df :	= 7 (P = 0	0.43); l² = 0%				
Test for overall effect: Z = 2.12	(P = 0.03)						
1.1.2 Darunavir							
Arribas 2010 (MONET wk48)	107	127	110	129	20.8%	0.99 [0.89, 1.10]	+
Katlama 2010 (MONOI)	82	112	91	113	10.8%	0.91 [0.79, 1.05]	
Subtotal (95% CI)		239		242	31.6%	0.96 [0.88, 1.04]	•
Total events	189		201				
Heterogeneity: Tau ² = 0.00; Ch	ni² = 0.88, df :	= 1 (P = 0	0.35); l² = 0%				
Test for overall effect: Z = 0.94	(P = 0.35)						
Total (95% CI)		591		607	100.0%	0.95 [0.90, 0.99]	♦
Total events	476		523				
Heterogeneity: Tau ² = 0.00; Ch	ni² = 7.91, df :	= 9 (P = 0	0.54); l² = 0%				
Test for overall effect: Z = 2.28	(P = 0.02)						0.2 0.5 1 2 5
Test for subgroup differences:	Not applicab	le					ravours combination ravours monotherapy

Study	Strategy
ACTG 5142 (2008)	bPI+ NNRTI
ANRS 121 (2008)	bPI+ NNRTI
RADAR (2013)	bPI + RAL
ACTG 5262 (2012)	bPI + RAL
NEAT 001 / ANRS 143	bPI + RAL
SPARTAN (2012)	bPI + RAL
PROGRESS (2012)	bPI + RAL
MODERN	bPI + MVC
A4001078	bPI + MVC
ACTG 5116	bPI + NNRTI
ROCnRAL ANRS157	MVC+RAL
EARNEST (2013)	bPI + RAL
INROADS (2013)	bPI + NNRTI

bPI + Integrases

Poor performance in NRTI-sparing regimens

• Is there a negative interaction between the drugs ?

Antiretroviral dynamics determines HIV evolution and predicts therapy outcome medicine

Daniel I. S. Rosenbloom^{1,*}, Alison L. Hill^{1,2,*}, S. Alireza Rabi^{3,*}, Robert F. Siliciano^{3,4,†}, and Martin A. Nowak^{1,†}

Nat Med. 2012 September ; 18(9): 1378-1385.

nature.

Antiretroviral dynamics determines HIV evolution and predicts therapy outcome edicine

Daniel I. S. Rosenbloom^{1,*}, Alison L. Hill^{1,2,*}, S. Alireza Rabi^{3,*}, Robert F. Siliciano^{3,4,†}, and Martin A. Nowak^{1,†}

Nat Med. 2012 September ; 18(9): 1378-1385.

nature.

Antiretroviral dynamics determines HIV evolution and predicts therapy outcome edicine

Daniel I. S. Rosenbloom^{1,*}, Alison L. Hill^{1,2,*}, S. Alireza Rabi^{3,*}, Robert F. Siliciano^{3,4,†}, and Martin A. Nowak^{1,†}

Nat Med. 2012 September ; 18(9): 1378–1385.

Co-formulations

nature

- Simulated adherence-resistance relationship with DRVr + Raltegravir
- Assumes random missed doses separately
- Raltegravir less forgiving for low adherence than DRVr
- At low levels of adherence (e.g. <40%), co-formulations predicted to be more likely to rebound, but less likely to develop resistance

Lifetime perspective

- how does it influence optimal management in 2013?

Optimal CD4 response

- Danish Study (N=1758) magnitude of CD4 rise (but not baseline) associated with mortality.
- 'controls' and lifestyle risk of MI, lung cancer, head & neck cancer inceased amonst parents of HIV patients

Optimal virological response

• should we tolerate blips and low grade viraemia ?

Persistent low-level viraemia

• Is it a bad thing ?

- May be assay-specific
- Linked to virological failure, resistance

• What is the cause ?

- Adherence
- Latently infected cells
- anatomical compartment
- Ceiling to ART efficacy, eg cell-to-cell transmission
- Can we do anything about it?

Low Level Viraemia, Rebound & Resistance

Risk of Rebound Abbott RealTime

Risk of Resistance UK Resistance Database

RFH cohort N = 1247 RNA - (N=500) RNA <40 (N=507) RNA 40-49 (N=240) HR = 10.42

UK resistance database 1999 - 2006

N = 7861 tests

Persistent low-level viraemia

ERAS Study

Persistently suppressed - 1^{st} Line NNRTI-ART for up to 15 years N = 104

HIV RNA detected 52/104 (50%) patients Median 3 copies

HIV-1 RNA cps/ml	Yea	rs VL <50 cps	Total		
	0-4 (n=31)	5-7 (n=33)	8-15 (n=40)	(n=104)	Р
Median (range)	3 (1, 35)	3 (1, 10)	3 (1, 11)	3 (1, 35)	0.451
Mean log ₁₀ (SD)	0.6 (0.3)	0.5 (0.2)	0.5 (0.2)	0.5 (0.2)	0.451

Is there a ceiling of efficacy to ART ?

- Low level viraemia not always indicative of poor adherence
- Not all compartments are sterilised, eg CNS, GALT

- Proviral DNA concentrations only modestly decreased
- Rebound on discontinuation
- Efficacy of ART on cell-to-cell transmission ?
- T cell activation declines, but remains abnormal many years after ART

Ageing and Inflammation

- Cardiovascular disease
- Cerebrovascular disease
- Diabetes
- Cancer
- Bone disease
- Declining renal function
- Cognition
- Peripheral neuropathy

Natural selection favors gene variants that promote fertility and immunity

 i.e. powerful immune response to infection, which later contributes to ageing phenotype and risk for comorbidities

ARVs do not currently prevent the cascade of inflammatory responses that are caused by HIV infection

Grund B et al. et al CROI 2013 Abst 60 Vijg and Campisi. Nature 2008; 454: 1065 Hunt et al CROI 2012

Cardiovascular Disease and Metabolic Syndrome

- Pooled MI risk 1.5 3-fold
- HIV patients ≤60y higher CVD & ↑BP than HIV neg controls

- Type II DM risk ↑~4-fold
- FRAM Study prevalence 37% (N=926)

Insulin resistance strong predictor of

cardiovascular disease

San Antonio Heart Study (N=2569) Verona Diabetes Complication Study (N>1400)

stroke

Northern Manhattan Study (N>1500)

Guaraldi G et al. CID 2011; 53:1120 DAD. Lancet 2008;371:1417 Worm JID 2010;201:318 Islam HIV Med 2012;13:453 Deeks Lancet 2013;382:1525 Grunfield JAIDS 2007;46:283 Worm. AIDS 2010, 24:427–435 Hanley Diabetes Care 2002;25:1177 Verona Diabetes Complications Study. Diabetes Care. 2002 Jul;25(7):1135 Rundek, Arch Neurol 2010;67:1195

Telmisartan

Only sartan licensed for cardio-protection

ONTARGET Trial (N=25,620; 120000 patient-years) [NEJM 2008] – Equivalent to ramipril, better tolerated TRANSCEND - ↓composite endpoint of CV death, MI, stroke

- Reverses insulin resistance in T2 DM (non-HIV)
 - numerous studies
- Partial PPARγ agonist
- Potential effect on adipocytes

TEL in HIV context

Table 2. Clinical and biochemical characteristics of patients at different time points

Original article

Antihypertensive and metabolic effects of telmisartan in hypertensive HIV-positive patients

Jacopo Vecchiet1*, Claudio Ucciferri¹, Katia Falasca¹, Paola Mancino¹, Angelo Di Iorio², Raffaele De Caterina

Antiviral Therapy 2011; 16:639-645

- N= 18
- 80mg q.d.
- Reduction in HOMA-IR

		P-value T0	P-value			
Variable	Baseline (TO)	1 Month (T1)	3 Months (T3)	6 Months (T6)	versus T1	for trend
ESR, mm/h	20.89 ±15.33	16.56 ±9.93	13.11 ±6.98	13.39 ±10.69	0.06	0.01
Total cholesterol, mg/dl	229.78 ±36.99	232.50 ±36.31	214.11 ±35.34	207.78 ±39.28	0.56	<0.001
HDL cholesterol, mg/dl	40.00 ±9.88	42.78 ±11.80	43.33 ±9.57	43.44 ±9.23	0.01	0.01
LDL cholesterol, mg/dl	136.42 ±32.54	140.11 ±31.57	124.34 ±32.62	120.99 ±34.42	0.04	<0.001
Triglycerides, mg/dl	280.44 ±105.57	240.11 ±81.77	221.67 ±75.38	217.67 ±70.44	< 0.001	<0.001
Systolic blood pressure, mmHg	151.11 ±6.54	137.78 ±5.48	133.89 ±9.32	131.11 ±7.39	<0.001	<0.001
Diastolic blood pressure, mmHg	96 67 +7 48	86 67 +6 42	<u> 22 29 +7 19</u>	82 22 +4 54	<0.001	<0.001
HOMA-IR	3.87 ±2.64	3.15 ±2.14	3.15 ±1.83	3.23 ±1.93	0.01	0.01
10-Year cardiovascular risk, %	16.83 ±8.04	18.11 ±8.17	15.50 ±8.40	14.22 ±7.68	0.20	0.01
Cystatin C, mg/l	1.04 ±0.30	0.97 ±0.27	0.95 ±0.29	0.89 ±0.25	0.21	<0.001
Microalbuminuria, mg/l	5.82 ±5.44	3.33 ±2.85	2.54 ±2.27	2.12 ±1.78	0.05	<0.001
Interleukin-18, pg/ml	420.25 ±138.03	392.61 ±153.67	361.48 ±158.33	340.68 ±155.28	<0.001	0.01
Endothelin-1, pg/ml	16.49 ±2.93	15.60 ±2.40	15.17 ±2.51	14.71 ±2.47	0.05	< 0.001

Total

OPEN a ACCESS Freely available online

A Pilot Study of Telmisartan for Visceral Adiposity in HIV Infection: The Metabolic Abnormalities, Telmisartan, and HIV Infection (MATH) Trial

Jordan E. Lake¹*, Chi-Hong Tseng², Judith S. Currier¹

PLoS One. 2013; 8(3): e58135

- N= 35
- 40mg q.d.
- Primary endpoint: 24-week change in % computed tomography (CT)-quantified VAT.
- Change in VAT, but not HOMA-IR

SAT

VAT

Lifetime perspective

- how does it influence optimal management in 2013?

Role of ongoing immune activation

 optimal timing of ARV initiation – seeding of latent reservoir, and maximal reduction of immune activation

Adjunctive therapy ?

- Treat blunted CD4 responses
- Treat immune activation
- Modulation of metabolic syndrome
- Prevent other toxicities
- HDAC Inhibitors
- etc, etc

Lifestyle Adaptation

Acknowledgements

David Back Simon Collins Polly Clayden Sara Gibbons Catia Marzolini Kay Seden Andrew Owen Marco Siccardi Marta Boffito Andrew Hill

... and many others