Dr Paddy Mallon
Mater Misericordiae University Hospital, Dublin, Ireland
Dr Paddy Mallon
Mater Misericordiae University Hospital, Dublin, Ireland

<table>
<thead>
<tr>
<th>Speaker Name</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Paddy Mallon</td>
<td>Dr Mallon and/or his employer has received financial support in the form of honoraria for consultancy services (including advisory boards), speaker services, funding to attend conferences and/or research income from the following companies; Gilead Sciences, ViiV Healthcare, GSK (Ireland), Janssen---Cilag, Merck, Sharpe and Dohme and Bristol Myers Squibb.</td>
</tr>
</tbody>
</table>

Date
October 2014
Life Expectancy
‘living long and well with HIV’

Dr Paddy Mallon

UCD HIV Molecular Research Group
Associate Dean for Research and Innovation
UCD School of Medicine and Medical Science

paddy.mallon@ucd.ie
Evolution of treatment for HIV infection
From mortality to long-term manageability

- Rapidly lethal
- HIV found to be cause of AIDS
- Antibody test
- Zidovudine
- Short Life expectancy
 - PCP ~9 months
 - AIDS ~21 months
 - QoL poor

- Incremental therapeutic advances
- Dual NRTI therapy
- RNA test
- PI-containing HAART
- Entry inhibitors
- Natural life expectancy
 - Good QoL

- Manageable long term
- NNRTI-containing HAART
- Vaccines?

- New drug classes?

Survival trends in HIV with effective ART

Cumulative survival curve for HIV-infected persons (non-HCV co-infected) and persons from the general population.

Survival From Age 25 Years

Probability of Survival

Age (years)

Population Controls
Late HAART (2000-2005)
Early HAART (1997-1999)
Pre-HAART (1995-1996)

n=383,862 (HIV-infected patients, n=3,990; General population controls, n=379,872)

Survival living with HIV on HAART - 2012

- \(N=3280 \) on continuous ART from SMART and ESPRIT trials
- 80% male, 61% MSM (no IDU), 43 years
- CD4 >350 and suppressed HIV RNA
- 62 deaths - mortality rate 5.02/1000 PY (95% CI 3.85, 6.43)
- Standardised mortality ratios (SMR) compared to the Human Mortality Database

<table>
<thead>
<tr>
<th>CD4 (cells/mm3)</th>
<th>350-500</th>
<th>>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR (95% CI)</td>
<td>1.77</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.17, 2.55)</td>
<td>(0.69, 1.4)</td>
</tr>
</tbody>
</table>

Barriers to achieving CD4+ > 500 cells/mm3

• Later diagnosis
 – Increase HIV testing and detection

• Lower CD4+ count at ART initiation
 – When to start?

• Older age

• Male gender
 – Do we need more personalised treatment guidelines?
HIV – ‘test and treat…..and link into care!’

HIV - ‘test and treat’ - new global direction

90-90-90
An ambitious treatment target to help end the AIDS epidemic

90% 90% 90%
Diagnosed On treatment Virally suppressed

When to Start HIV Treatment

Adapted from Schechter M, *JID* 2004;190:1043-1045

- **Late clinical stages**
 - < 200

- **Early clinical stages**
 - > 500

- **Any viral load**
 - 200
 - 350

- **High viral load**
 - > 500

CD4

DRUG SAFETY

AGE

HMRG
HIV Molecular Research Group
Survival predictions in HIV – effect of ART

Expected age at death* - men

Expected age at death* - women

* Expected age at death for a person aged 35 years with different durations of antiretroviral therapy according to current CD4 count and viral load suppression

Mortality in treated HIV

Causes of death in a **successfully ART-treated** population:

SMART/ESPRIT: causes of death in N=3,280 HIV-infected persons receiving suppressive cART with CD4 counts ≥350 cells/mm³

- **CVD**: 31%
- **Cancer**\(^*\): 19%
- **Unnatural**\(^*\): 18%
- **Infection**: 10%
- **Liver disease**: 8%
- **AIDS**: 3%
- **Unknown**: 2%

\(^*\) = non-AIDS malignancy
\(^*\) = accident, suicide or violent death

Bone health and HIV

<table>
<thead>
<tr>
<th>Country</th>
<th>N</th>
<th>HIV+ %</th>
<th>% male</th>
<th>Fractures</th>
<th>Association between fracture and HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA¹</td>
<td>119,318</td>
<td>33%</td>
<td>100</td>
<td>1615</td>
<td>HR 1.24 (1.11, 1.39)</td>
</tr>
<tr>
<td>Denmark²</td>
<td>31,836</td>
<td>5,306</td>
<td>76</td>
<td>806</td>
<td>IRR 1.5 (1.4-1.7)</td>
</tr>
<tr>
<td>Canada³</td>
<td>540</td>
<td>138</td>
<td>0</td>
<td>-</td>
<td>OR 1.7 (1.1, 2.6)</td>
</tr>
<tr>
<td>USA⁴</td>
<td>559</td>
<td>328</td>
<td>100</td>
<td>33</td>
<td>No difference in fracture rates</td>
</tr>
<tr>
<td>Spain⁵</td>
<td>1,118,15</td>
<td>2,489</td>
<td>-</td>
<td>24,457</td>
<td>HR 4.7 (2.44, 9.5) hip (HIV+ 49)</td>
</tr>
</tbody>
</table>

Frailty-related phenotype increases with age, accelerated by HIV infection.

- **MACS cohort study**
 - HIV infected (n = 245)
 - HIV negative (n = 1,905)
 - Compared to HIV- of similar age, ethnicity and education, HIV+ more likely to have frailty phenotype
 - Frailty prevalence increases with longer duration of infection
 - Risk 3–14 fold > in men infected with HIV for 4 to 12 years
 - Frailty prevalence for 55-year-old men infected with HIV for >4 years similar to that of uninfected men >65 years old (3.4%)

Frailty-related phenotype defined as at least 3 of: physical shrinking, exhaustion, slowness, low physical activity level

Reducing risk of MI – what works?

D:A:D - risk of CVD events decreases by nearly 30% after stopping smoking for > 3 years

- 746 CVD events reported during 151,717 person years of follow up, yielding overall crude rates (and 95% CI) per 1,000 person years of 4.92 (4.57, 5.28)

- Compared to current smokers, the risk of CVD among patients who stopped smoking for more than 3 years was reduced by approximately 30% (IRR (95% CI): 0.74 (0.48, 1.15))

Future research in HIV and ageing

‘Pharmacokinetic and Clinical Observations in People over Fifty’

UK and Ireland

The Netherlands