

30 Years of AIDS, 30 Million Deaths and 33 Million Infected

2000: The International Response

For Every Person Put on Antiretroviral Therapy in Africa, Two People are Newly Infected with HIV

Transmission Dynamics Model

$R_0 = \beta x c x D$

- **R**₀ = Case reproduction rate
- **ß** = Efficiency of transmission (infectiousness of pathogen, prophylaxis)
- C = Mean number of contacts per time (acts, partners)
- D = Duration of infectiousness (natural hx of pathogen, treatment)

Biological Factors That Affect HIV Sexual Transmission (Infectiousness)

- Level of Blood Viral Load
- Genital Viral Load
- Acute Infection and Advanced Disease
- Immunosuppression
- Genital ulcerations
- Inflammatory STDs
- Cervical ectopy
- Viral Subtype and phenotype X4/R5
- Antiretroviral therapy

Biological Factors That Affect Susceptibility To HIV (Acquisition)

- Viral Load in the Infected Index Case
- Genital ulcers
- Inflammatory STDs
- Cervical ectopy
- Uncircumcised
- HLA Haplotype
- Chemokines/Cytokines

9 Trials of STI Control for HIV Prevention

Control of Curable STIs:

- Syndromic management or presumptive therapy
- 5 community randomized trials
 - Grosskurth Lancet 2005, Wawer Lancet 1999, Gray Am J Ob Gynecol 2001, Kamali Lancet 2003, Gregson PLos 2007
- 1 individually randomized trial
 - Kaul JAMA 2004

HSV-2 suppression in HIV-negative participants

- 2 randomized trials of acyclovir
 - Watson Jones NEJM 2007, Celum Lancet 2008
- HSV-2 suppression in HIV-positive participant
 - 1 randomized trials of acyclovir
 - Celum et al NEJM 2010

Trials of STI Control for Prevention of HIV Acquisition							
				Risk Ratio	Risk Ratio		
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl		
Grosskurth	-0.544	0.161	16.8%	0.58 [0.42, 0.80]			
Wawer	-0.03	0.092	24.3%	0.97 [0.81, 1.16]			
Gray (pregnant women)	0.131	0.225	11.7%	1.14 [0.73, 1.77]			
Kamali	-0.0943	0.246	10.4%	0.91 [0.56, 1.47]			
Kaul	0.182	0.364	5.8%	1.20 [0.59, 2.45]			
Gregson	0.239	0.364	5.8%	1.27 [0.62, 2.59]			
Celum (HSV2)	0.148	0.171	15.9%	1.16 [0.83, 1.62]			
Watson-Jones (HSV2)	0.07696	0.268	9.3%	1.08 [0.64, 1.83]			
Total (95% CI)			100.0%	0.96 [0.80, 1.17]			
Heterogeneity: Tau² = 0.03; Chi² = 12.74, df = 7 (P = 0.08); l² = 45%							
Test for overall effect: Z = 0.39 (P = 0.70) Favours treatment Favours control							
7 negative trials; One RCT showed efficacy in a low HIV incidence/prevalence setting (Mwanza)							

HSV-2 Suppression in <u>HIV+ co-infected</u> persons to prevent transmission

4 RCTs with Intermediate end points

- HIV shedding, genital and plasma viral load
- Ouedraogo AIDS 2006, Zuckerman JID 2007, NaGOT nejm 2007, Baeten JID 2008, Zuckerman AIDS 2009

One RCT with a HIV end point:

(Celum et al, NEJM 2010)

HSV-2 Suppression in HIV+ Co-infected Partners in Serodiscordant couples

- 3408 HIV-serodiscordant couples
- Co-infected HIV+ partners treated with acyclovir 400mg bid
- Primary endpoint HIV transmission

Results

- HIV transmission: HR = 0.92 (0.60-1.41)^{ns}
- HSV-2 GUD: HR = 0.27 (0.20-0.36) <0.001
- Plasma viral load: -0.25 log₁₀ cps/mL^{<0.001}

(Celum et al NEJM 2010.)

What about... "The STD Paradox"?

Only 1/9 STD intervention RCTs have led to reduced transmission of HIV

So... either STDs do not "amplify" HIV transmission OR (MORE LIKELY) the interventions were inadequate??

BUT Successful intervention requires that.....

- ✓ The "RIGHT" STD(S) are treated
- ✓ At JUST the right time
- ✓ In JUST the right people (HIV positive or negative)
- ✓ With VERY EFFECTIVE drugs(s)
- ✓ For the RIGHT duration of time

And treating STDs has a benefit far BEYOND the effects of HIV prevention

The Effect of Circumcision on Acquisition and Transmission of HIV and STIs

Randomised controlled trials of male circumcision to reduce HIV infection (>50% Effectiveness)

Rakai, Uganda Gray *et. al.* (2007) Lancet; 657 – 66

Kisumu, Kenya Bailey *et. al.* (2007) Lancet; 643 – 56

Orange Farm, South Africa Auvert *et. al.* (2005) PLoS Med; e298

н	HIV incidence during and after the RCT in Trial Participants							
		Circumcised HIV/100 py	Uncircumcised HIV/100 py	IRR (95%CI)				
	<u>Trial (N=4,996)</u>	0.47	1.14	0.41 (0.25-0.68)				
	Gray et al Lancet 2007							

	Circumcised HIV/100 py	Uncircumcised HIV/100 py	IRR (95%CI)
<u>Trial (N=4,996)</u>	0.47	1.14	0.41 (0.25-0.68)
Post-Trial Period			
All Men	0.54	1.66	0.33 (0.18-0.59)
Control Arm Men	0.53	1.65	0.32 (0.15-0.65)

- Post-exposure prophylaxis
- Pre-exposure prophylaxis
- Treatment of chronic infection

Impact of adherence on effectiveness of tenofovir gel

			HIV incidence		
	# HIV	Ν	TFV	Placebo	Effect
High adherers (>80% gel adherence)	36	336	4.2	9.3	54%
Intermediate adherers (50-80% adherence)	20	181	6.3	10.0	38%
Low adherers (<50% gel adherence)	41	367	6.2	8.6	28%

Slide 43

t1 I split the text into different boxes so it would be easier to manipulate

got better photo from article tmaddox, 09/02/2011

Investigation: Ongoing PrEP efficacy studies						
Location	Sponsor/ Funder	Population	N	PrEP Agent	Status	
Thailand Bangkok Tenofovir Study	CDC	IDU	2400	TDF	Fully enrolled Results 2012	
Kenya, Uganda Partners PrEP Study	UW / BMGF	HIV discordant couples	4758	TDF, FTC/TDF	Fully enrolled Results 2012	
Kenya, South Africa , Tanzania, Zimbabwe <i>FEM-PrEP</i>	FHI / USAID & BMGF	Women	3900	FTC/TDF	49% enrolled Results 2013	
South Africa, Uganda, Zimbabwe VOICE / MTN 003	MTN / NIH	Women	5000	TDF, FTC/TDF, Vaginal tenofovir gel (<u>daily</u>)	65% enrolled Results 2013	
Safety, efficacy, resistance & costs of TDF & FTC-TDF will inform choice of drugs for PrEP roll-out						

Key challenges in future implementation of PrEP: impact on study design

- Is it safe to give ARV drugs to healthy people?
- Will those who get infected have HIV that is resistant to the PrEP antiretrovirals? Will this affect their subsequent care and choice of ARV treatment?
- Will healthy people be willing to take medication everyday or at the time of sex for long periods?
- Is this an affordable and practical HIV prevention strategy for scale-up if it is efficacious?
- Will there be behavioral disinhibition / risk compensation?

Successes In Prevention

- ARVs for PMTCT (>90%)
- ARVs for Discordant Couples (>90%)
- Male Circumcision (>68% and lifelong)
- PrEP (42%) (up to 73% if >90% adherent)
- Microbicide (39%, but >54% if 80% adherent)
- Thai vaccine (31%)

