This house believes that efavirenz should remain as an option to treat HIV in the UK

Alejandro Arenas-Pinto
MRC-Clinical Trial Unit
University College London

23rd Annual Conference of the British HIV Association (BHIVA)
5th April 2017
This house believes that efavirenz should remain as an option to treat HIV in the UK.

Alejandro Arenas-Pinto
MRC-Clinical Trial Unit
University College London

23rd Annual Conference of the British HIV Association (BHIVA)
5th April 2017
Shall we keep EFV as a treatment option in the UK?

- Potency and efficacy
- Resistance profile
- Tolerability profile
- Toxicity profile
Shall we keep EFV as a treatment option in the UK?

- Potency and efficacy
- Resistance profile
- Tolerability profile
- Toxicity profile
Shall we keep EFV as a treatment option in the UK?

- Potency and efficacy
- Resistance profile
- Tolerability profile
- Toxicity profile

What would be the right place for EFV in 2017?
Potency compared to other NNRTI

Doravirine vs EFV: 48 week results

- HIV RNA <40 copies/mL (NC-F Approach)
- % of Patients (95% CI)
- Treatment Week:
 - 0: 6.5 (CI: 3.7 - 9.3)
 - 4: 15.7 (CI: 12.0 - 19.4)
 - 8: 27.8 (CI: 23.1 - 32.5)
 - 12: 25.9 (CI: 21.6 - 30.2)
 - 16: 47.2 (CI: 40.3 - 54.1)
 - 20: 42.1 (CI: 36.6 - 47.6)
 - 24: 57.5 (CI: 51.7 - 63.3)
 - 32: 63.0 (CI: 57.2 - 68.8)
 - 36: 72.9 (CI: 68.1 - 77.7)
 - 40: 73.1 (CI: 68.3 - 77.9)
 - 44: 81.5 (CI: 76.7 - 86.3)
 - 48: 78.7 (CI: 73.9 - 83.5)

Rilpivirine vs EFV: 96 week results

- Participants with HIV-1 RNA <50 copies/mL %
- Study week:
 - 4: 100 (CI: 98 - 100)
 - 8: 98 (CI: 96 - 100)
 - 12: 95 (CI: 93 - 97)
 - 16: 92 (CI: 90 - 94)
 - 20: 89 (CI: 87 - 91)
 - 24: 86 (CI: 84 - 88)
 - 30: 83 (CI: 81 - 85)
 - 36: 80 (CI: 78 - 82)
 - 40: 77 (CI: 75 - 79)
 - 44: 74 (CI: 72 - 76)
 - 48: 71 (CI: 69 - 73)
 - 52: 68 (CI: 66 - 70)
 - 56: 65 (CI: 63 - 67)
 - 60: 62 (CI: 60 - 64)
 - 64: 59 (CI: 57 - 61)
 - 68: 56 (CI: 54 - 58)
 - 72: 53 (CI: 51 - 55)
 - 76: 50 (CI: 48 - 52)
 - 80: 47 (CI: 45 - 49)
 - 84: 44 (CI: 42 - 46)
 - 88: 41 (CI: 39 - 43)
 - 92: 38 (CI: 36 - 40)
 - 96: 35 (CI: 33 - 37)

Legend
- DOR: 84/108 (77.8%)
- EFV: 85/108 (78.7%)
- Difference (95% CI): -1.1 (-12.2, 10.0)

2 van Lunzen et al. AIDS 2016; 30(2): 251–9
STARTMRK: EFV vs RAL in ART-naïve patients¹

DTG + two NRTI vs. EFV + two NRTIs. Viral suppression to non-detectable (<50 copies/mL) at 96 weeks²

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DTG-based regimen</th>
<th>EFV-based regimen</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>331 Events</td>
<td>414 Events</td>
<td>419 Weight</td>
</tr>
<tr>
<td>SPRING-1</td>
<td>45 Events</td>
<td>51 Events</td>
<td>50 Weight</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>465 Events</td>
<td>469 Events</td>
<td>1.12 [1.04, 1.21]</td>
</tr>
</tbody>
</table>

Total events: 376 338

Heterogeneity: Chi² = 0.83, df = 1 (P = 0.36); I² = 0%
Test for overall effect: Z = 3.14 (P = 0.002)

STARTMRK: EFV vs RAL in ART-naïve patients

There are other options with similar or even better efficacy

DTG + two NRTI vs. EFV + two NRTIs. Viral suppression to non-detectable (<50 copies/mL) at 96 weeks

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>DTG-based regimen</th>
<th>EFV-based regimen</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>331</td>
<td>302</td>
<td>1.11 [1.03, 1.20]</td>
</tr>
<tr>
<td>SPRING-1</td>
<td>45</td>
<td>36</td>
<td>1.23 [1.00, 1.50]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>465</td>
<td>469</td>
<td>1.12 [1.04, 1.21]</td>
</tr>
<tr>
<td>Total events</td>
<td>376</td>
<td>338</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 0.83$, df = 1 (P = 0.36); $I^2 = 0$
Test for overall effect: $Z = 3.14$ (P = 0.002)

Resistance profile

![Graph showing resistance profile](image)

Figure 4. Incidence of resistance at week 96 in pivotal clinical trials of antiretroviral therapy in naive patients (see text for explanation and references). II: integrase inhibitors; DTG: dolutegravir; RAL: raltegravir; EVG: elvitegravir; NNRTI: nonnucleoside reverse transcriptase inhibitors; EFV: efavirenz; RPV: rilpivirine; PI: protease inhibitors; DRV/r: darunavir/ritonavir; ATV/r: atazanavir/ritonavir.
Resistance profile

TDR in ART-naïve patients (UK): predicted phenotypic resistance

Fig. 2 Predicted phenotypic resistance (Stanford scores) for antiretroviral drugs currently recommended for first-line combination therapy in the UK, 2010—2013. 3TC, lamivudine; ABC, abacavir; ATV, atazanavir; DRV, darunavir; EFV, efavirenz; FTC, emtricitabine; PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; RPV, rilpivirine; TDF, tenofovir.
Tolerability

discontinuation of the therapy due to adverse events

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>efavirenz</th>
<th>InSTI</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Cohen 2011</td>
<td>1</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Lennox 2009/2010 STARTMRK</td>
<td>17</td>
<td>282</td>
<td>9</td>
</tr>
<tr>
<td>Markowitz 2007/2009</td>
<td>1</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>Stellbrink 2013 SPRING-1</td>
<td>5</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Walmsley 2013 SINGLE</td>
<td>42</td>
<td>419</td>
<td>10</td>
</tr>
<tr>
<td>Zolopa 2013 GS-US-236-0102</td>
<td>24</td>
<td>352</td>
<td>17</td>
</tr>
</tbody>
</table>

Total (95% CI)

| | 1164 | 1302 | 100.0% | 2.30 [1.60, 3.31] |

Total events

| | 90 | 41 |

Heterogeneity: Chi² = 6.38, df = 5 (P = 0.27); I² = 22%

Test for overall effect: Z = 4.50 (P < 0.00001)

Can we predict tolerability?

Tolerability seems to depend on the rate of EFV metabolism.

Table 2: Incidence density rates of central nervous system (CNS) events according to cytochrome P450 (CYP) 2B6 516 T variants

<table>
<thead>
<tr>
<th>CNS events</th>
<th>Number of events</th>
<th>Cumulative time (months)</th>
<th>Incidence density rate (per 100 patient-years)</th>
<th>Confidence interval (patient-years)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6 516 G/G</td>
<td>106</td>
<td>270</td>
<td>39.2</td>
<td>38.5–40.0</td>
<td>0.02</td>
</tr>
<tr>
<td>CYP2B6 516 G/T or T/T</td>
<td>143</td>
<td>260</td>
<td>55.0</td>
<td>54.1–55.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>249</td>
<td>530</td>
<td>47.0</td>
<td>46.4–47.5</td>
<td></td>
</tr>
</tbody>
</table>
Extensive EFV metabolism is associated with greater CNS toxicity

Vujkovic M et al CROI 2017. Seattle, WA, USA (Abs 384)
Serious toxicity: suicidality

- ACTG meta-analysis: 4 ART-naïve RCTs

A. ITT DSMB

<table>
<thead>
<tr>
<th>Variable</th>
<th>Events/PYs (IR per 1000 PYs)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EFV</td>
<td>EFV-Free</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>47/5817 (8.08)</td>
<td>15/4099 (3.66)</td>
<td>2.28 (1.27–4.10)</td>
</tr>
<tr>
<td>Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5095</td>
<td>6/739 (8.12)</td>
<td>1/364 (2.75)</td>
<td>3.00 (0.36–24.88)</td>
</tr>
<tr>
<td>A5142</td>
<td>8/1001 (7.99)</td>
<td>2/510 (3.92)</td>
<td>2.04 (0.43–9.62)</td>
</tr>
<tr>
<td>A5175</td>
<td>13/1763 (7.38)</td>
<td>2/889 (2.25)</td>
<td>3.28 (0.74–14.52)</td>
</tr>
<tr>
<td>A5202</td>
<td>20/2315 (8.64)</td>
<td>10/2336 (4.28)</td>
<td>2.02 (0.94–4.31)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>39/4346 (8.97)</td>
<td>13/3354 (3.88)</td>
<td>2.32 (1.23–4.38)</td>
</tr>
<tr>
<td>Multinational</td>
<td>8/1471 (5.44)</td>
<td>2/745 (2.68)</td>
<td>2.02 (0.43–9.53)</td>
</tr>
</tbody>
</table>
Suicidal behaviour by Pre-specified ART and Prior Psychiatric Diagnosis in START

- **Efavirenz** (n=3516):
 - Prior Diagnosis: 3.1% (No. of Events: 7, Rate: 2.0 per 100 PY)
 - No Prior Diagnosis: 96.9% (No. of Events: 22, Rate: 0.2 per 100 PY)

- **Other ART** (n=1169):
 - Prior Diagnosis: 13.9% (No. of Events: 8, Rate: 1.7 per 100 PY)
 - No Prior Diagnosis: 86.1% (No. of Events: 14, Rate: 0.5 per 100 PY)
Suicidal behaviour by Pre-specified ART and Prior Psychiatric Diagnosis in START

Overall Rate: 0.28 per 100 PY

Overall Rate: 0.63 per 100 PY

Efavirenz (n=3516)

Other ART (n=1169)

Pre-specified ART
Suicidal/self harming events by randomisation arm in START

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Immediate ART</th>
<th>Deferred ART</th>
<th>HR<sup>a</sup></th>
<th>95% CI</th>
<th>P</th>
<th>Int. P<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Events</td>
<td>Rate</td>
<td>Events</td>
<td>Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT analysis, year 1 only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFV pre-specified</td>
<td>3516</td>
<td>9</td>
<td>0.52</td>
<td>2</td>
<td>0.11</td>
<td>3.75 (0.8, 17.5)</td>
<td>0.09</td>
</tr>
<tr>
<td>Other ART pre-specified</td>
<td>1169</td>
<td>7</td>
<td>1.25</td>
<td>7</td>
<td>1.19</td>
<td>1.02 (0.4, 2.9)</td>
<td>0.96</td>
</tr>
<tr>
<td>Censoring deferred arm participants at ART initiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFV pre-specified<sup>c</sup></td>
<td>3516</td>
<td>17</td>
<td>0.35</td>
<td>3</td>
<td>0.08</td>
<td>4.16 (1.2, 14.4)</td>
<td>0.02</td>
</tr>
<tr>
<td>Other ART pre-specified<sup>d</sup></td>
<td>1137</td>
<td>9</td>
<td>0.59</td>
<td>8</td>
<td>0.69</td>
<td>1.04 (0.4, 2.7)</td>
<td>0.93</td>
</tr>
</tbody>
</table>

^a Estimated in Cox proportional hazards models, stratified by psychiatric diagnosis.

^b Interaction between indicators for treatment group and pre-specified regimen.

^c Of these events, 6 and 0, in the immediate vs deferred arms, respectively, occurred among 108 participants with prior psychiatric diagnoses.

^d Of these events, 5 and 2, in the immediate vs deferred arms respectively, occurred among 162 participants with prior psychiatric diagnoses.

Of the 1169 participants without EFV in the pre-specified regimen, 32 were excluded (in the immediate group, 7 never started ART, and for 25, the first ART regimen contained EFV). Follow-up in the immediate group was censored at EFV start.

Arenas-Pinto et al. AIDS 2016 Conference. Durban, SA (Abstract THAB0202)
Conclusion

- EFV is a very good drug that deserves a prominent place,
Conclusion

- EFV is a very good drug that deserves a prominent place,

Not here
• EFV is a very good drug that deserves a prominent place,

Not here

But, there

British HIV Association
BHIVA
CLINICAL GUIDELINES

British Society for the History of Medicine
Many thanks to

- Prof David Dunn, MRC-CTU at UCL
- START trial team
- Insight network
- You all for your attention