

Professor Philippe van de Perre

Arnaud de Villeneuve Hospital

Montpellier, France

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:		
Speaker Name	Statement	
Prof Philippe van de Perre	None	
Date	November 2013	

14-15 November 2013, Queen Elizabeth II Conference Centre, London

The science of transmission of HIV via breastmilk

Philippe Van de Perre

INSERM U 1058 University Montpellier 1 CHU Montpellier

BHIVA, London, November 2013

PMTCT research, 1994-2012

What has been acquired from PMTCT research

• Prevention of de perinatal HIV transmission:

- ✓ Early initiation of prophylaxis during pregnancy;
- ✓ Combination ARTs are more effective than monoprophylactic regimens;
- ✓ Some drugs are more efficacious, some may be hazardous (Efavirenz and neurological defects)*;
- The target of elimination (MTCT < 5%) seems achievable, if no breastfeeding.

• Prevention of postnatal (breastfeeding) HIV transmission:

- No prophylactic trial covering the whole duration of breastfeeding exposure (= 12 months);
- ✓ Important residual transmission (3,6% at 6 months in the Kesho Bora trial);
- ✓ Concerns about adherence ;
- ✓ The target of elimination seems out of reach.

WHO guidelines for PMTCT and infant feeding (June 2013)

... but research on breastfeeding transmission should continue!

June 2013 UN guidelines? A critical analysis

- Alarming inflation in the number of WHO-UNICEF PMTCT recommendations ('90s: n=1, 2000s: n=4, 2011-2013: n=2);
- Current WHO PMTCT recommendations are not evidence-based;
- Push for option B+ is based on mathematical models, best guess estimates on feasibility but NOT on measured efficacy or efficiency.

Option B or B+ ?

 Suboptimal efficacy on postnatal transmission in the Kesho Bora trial: in mothers with > 350 CD4/μl,
6-month efficacy = 29% (NS)*;

Exception of the « TasP dogma »?

- Suboptimal adherence: in a metanalysis of more than 20,000 pregnant women, adherence of 53% at 12 months post partum**;
- Extremely high rate of resistance in infants who get HIV-infected despite maternal prophylaxis***

* Kesho Bora Study Group, Lancet Infect Dis, 2011

** Nachega et al, AIDS 2012

** Zeh, PlosMed 2011; Fogel, Clin Infect Dis 2011; Lidström, CROI 2010

Mechanism(s) of breastfeeding transmission of HIV: the moving target

An evolving host

A complex and biologically active source of infection

Portal of entry

Polarised HIV-1 infected cell

Transcytosis in an enterocyte

Macrophages, lymphocytes and dendritic cells in the *lamina* propria

Transcytosis of HIV-1 across human enterocytes

Concept of viral synapse

 HIV-1 gp41 recognises a membrane agrin (heparan sulfate proteoglycan) that favour interaction with GalCer and mediate transcytosis through an integrin associated mechanism

A Alfsen, 2005

Breastfeeding transmission of HIV-1: by free virions or by HIV-infected cells?

Cumulative HIV-1 RNA exposure in HIV-1 infected and non infected infants between 6 weeks and estimated age of HIV acquisition

ANRS 1271 Study / VTS

Cumulative HIV-1 RNA exposure until HIV infection	Case	Control	p-value
Total; N=36 pairs			
	19.65 * 10 ⁷	1.30 * 10 ⁷	<0.001
Maternal antenatal CD4 >350 cells/µl; N=14 pairs			
	14.86 * 10 ⁷	1.27 * 10 ⁷	<0.001

Neveu D, Clin Infect Dis 2010

Cell-free and cell-associated HIV-1 are both responsible for breast milk transmission

	Cell-free virus	Cell-associated virus	indetermined
< 9 m post p	2	8	6
> 9 m post p	11	8	5
Total	13	16	11
	p=	0.03	

Characteristics of T and B lymphocytes from breast milk

Compared to blood, breast milk T and B lymphocytes are

- More frequently memory cells (less naive cells)
- More often activated
- Express markers of homing signing their mucosal origin

(E. Tuaillon et al; J Immunol 2011)

LABORATORY STRATEGY

A

Proportion of latently infected cells able to enter viral cycle

	Blood	Breast milk
HIV-1 DNA copies per 10 ⁶ T CD4+ cells (6.948 2.351-23.043)	4.788 (2.590-47.294)
HIV-1 Ag secreting cells per 10 ⁶ T CD4+ cells	45 (9-108)*	500 (205-934)*
% of HIV-1 infected T CD4+ cells entering viral cycle	0,9 - 1,8%	10,4 - 32,4%

Cell activation in breast milk:

- Associated with reactivation of CMV and EBV
- Consistent with cytokine and proteome profiles

Productively infected CD4⁺ T cells from BM

	Breast milk	Blood
HIV-1 DNA copies/10 ⁶ CD4+T cells	2886	2240
HIV-1-Ag-SC/10 ⁶ CD4+T cells (with undetectable HIV-1 RNA)	13	8
HIV-1-Ag-SC/10 ⁶ CD4+T cells (with detectable HIV-1 RNA)	10	6

Viral antigens, RNA copies and infectious virus are detected in cell culture supernatants

Valea D et al, Retrovirology 2011

Cells are either activated within BM and the mammary gland or during migration from mucosal inductor sites Productively infected CD4⁺ T cells are detectable in ARTtreated women with undetectable HIV-1 RNA in blood and breast milk

Valea D et al, Retrovirology 2011

Antiretroviral drugs in breast milk

Antiretroviral drugs in breast milk of HIV-1 infected women

% Breast milk / plasma

Infant PreP (Option A) ?

- Until now, unknown efficacy if infant PreP is extended during the whole duration of exposure (12 months breastfeeding recommended by WHO);
- Adherence and tolerance uncompletely explored;
- Results of the ANRS 12274-PROMISE-PEP trial

BAN trial (Malawi)

- HIV-infected pregnant women, CD4>250/µl, breastfeeding for max 28 weeks, N=2.369
- Comparison
 - mothers: AZT/3TC/[NVP or NFV or LPV/r]
 - infant: PreP NVP (max 28 weeks)
 - control: perinatal prophylaxis only

• <u>At 28 w</u> :	Postnatal t ransmission (2 to 28 w)	Inf HIV+ or death
ART in moms	2.9% (1,9-4,4) (n=21)	4.1% (2,9-5,8)
PreP in infants	1.7% (1,0-2,9) (n=12)	2.6% (1,7-4,1)
Control	5.7% (4,1-8,0) (n=32)	7.0% (5,1-9,4)

Chasela CS, NEJM 2010

ANRS 12174 trial – preliminary data

- Randomised trial of infant PreP extended up to 12 months, 3TC versus LPV/r; Burkina Faso/Uganda/Afrique du Sud/Zambie
- N=1273; Follow up will be completed in April 2013;
- July 2012: unblinded analyses on transmission, tolerance and mortality on the 788 infants aged 12 months or more;
- D7-M12 HIV-1 Transmission rate: 1,1% (95% CI: 0.6-2.2), including 6/9 infections after 6 months (D7-M6 transmission: 0.3%)
- Overall MTCT rate: 1.8%, well within the target of elimination !
- 12 months mortality: 3.2 per 100 inf-yr (95% CI: 1.8-4.5)
- ✓ 12 months HIV-free survival : 96% (95%CI: 94-97)
- ✓ SAE: 188, none attributable to PreP

Conclusions:

- Transmission rate is the lowest ever observed;
- Compared efficacy and tolerance of the 2 PreP regimens will be known in December 2013

Conclusions (1)

- Do not throw Infant PreP (option A) with the baby's bath
- 2. Evidence based versus best guess or model-based international recommendations?
- 3. Future research ?
- How to operationalise the access to prevention and therapy within national programs?;
- How to optimise existing PMTCT regimens?;
- Infant PreP: a place for long acting ARV drugs?

What about tomorrow?

STR-based ART in all HIV infected pregnant women eligible

Infant PreP with a long acting drug covering the whole duration of breastfeeding

Examples: Rilpivirine LA*, GSK744**

* Van 't Klooster G, AAC 2010 ** Andrews C et al, CROI 2013, Atlanta

Many thanks to...

• INSERM U 1058, Montpellier, France

Edouard Tuaillon, Pierre-Alain Rubbo, Jean-Pierre Moles, Vincent Foulongne, Jérome Solassol, Nicolas Nagot

• The European-African PROMISE consortium

Thorkild Tylleskär, James Tumwine, Chipepo Kankasa, Justus Homyer Nicolas Meda

- Centre Muraz, Bobo-Dioulasso, Burkina Faso Diane Valéa,
- AFRICA Centre, Durban, South Africa

Johannes Viljoen, Siva Danaviah, Marie-Louise Newell

Funds: ANRS, EDCTP, Research Council of Norway

