Professor Philippe van de Perre
Arnaud de Villeneuve Hospital
Montpellier, France

<table>
<thead>
<tr>
<th>Speaker Name</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof Philippe van de Perre</td>
<td>None</td>
</tr>
</tbody>
</table>

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:

| Date | November 2013 |
The science of transmission of HIV via breastmilk

Philippe Van de Perre

INSERM U 1058
University Montpellier 1
CHU Montpellier

BHIVA, London, November 2013
PMTCT research, 1994-2012

1994 U.S. AZT Trial ACTG 076
1998 Thai Bangkok short AZT
1998 Cote d’Ivoire short AP/IP AZT trials (Bfeeding)
1999 PETRA trial AZT + 3TC
1999 HIVNET 012/Uganda single dose NVP (moms & nn)
2000 Thailand PHPT-1 Long vs short AZT
2003 ANRS DITRAME + AZT/3TC/NVP
2004 Thai trial PHPT-2 AZT & NVP
2008 PEPI NVP + short vs long AZT for bfed infant
2008 SWEN NVP PreP for bfed infant
2009 Mma Bana: ART vs Prep CD4<200
2010 BAN: ART vs PreP (CD4>250)
2011 Kesho Bora: ART (CD4>350, Bfeeding)

Source: McIntyre J, Perinatal HIV Clinical Trials
What has been acquired from PMTCT research

• **Prevention of de perinatal HIV transmission:**
 ✓ Early initiation of prophylaxis during pregnancy;
 ✓ Combination ARTs are more effective than monoprophylactic regimens;
 ✓ Some drugs are more efficacious, some may be hazardous (Efavirenz and neurological defects)* ;
 ✓ The target of elimination (MTCT < 5%) seems achievable, if no breastfeeding.

• **Prevention of postnatal (breastfeeding) HIV transmission:**
 ✓ No prophylactic trial covering the whole duration of breastfeeding exposure (= 12 months);
 ✓ Important residual transmission (3.6% at 6 months in the Kesho Bora trial);
 ✓ Concerns about adherence ;
 ✓ The target of elimination seems out of reach.

* Sibiude et al, CROI 2013, Atlanta
WHO guidelines for PMTCT and infant feeding (June 2013)

... but research on breastfeeding transmission should continue!
June 2013 UN guidelines? A critical analysis

- Alarming inflation in the number of WHO-UNICEF PMTCT recommendations (’90s: n=1, 2000s: n=4, 2011-2013: n=2);

- Current WHO PMTCT recommendations are not evidence-based;

- Push for option B+ is based on mathematical models, best guess estimates on feasibility but NOT on measured efficacy or efficiency.

Van de Perre P; BMJ 2013
Option B or B+?

• Suboptimal efficacy on postnatal transmission in the Kesho Bora trial: in mothers with > 350 CD4/μl, 6-month efficacy = 29% (NS)*;

Exception of the « TasP dogma »?

• Suboptimal adherence: in a metanalysis of more than 20,000 pregnant women, adherence of 53% at 12 months post partum**;

• Extremely high rate of resistance in infants who get HIV-infected despite maternal prophylaxis***

* Kesho Bora Study Group, Lancet Infect Dis, 2011
** Nachega et al, AIDS 2012
*** Zeh, PlosMed 2011; Fogel, Clin Infect Dis 2011; Lidström, CROI 2010
Mechanism(s) of breastfeeding transmission of HIV: the moving target

An evolving host

A complex and biologically active source of infection

Graph showing cells/ml over weeks of lactation:
- Macrophages
- Lymphocytes
Portal of entry
Polarised HIV-1 infected cell

Gal Cer

Transcytosis in an enterocyte

Macrophages, lymphocytes and dendritic cells in the \textit{lamina propria}
Transcytosis of HIV-1 across human enterocytes

- Concept of viral synapse
- HIV-1 gp41 recognises a membrane agrin (heparan sulfate proteoglycan) that favour interaction with GalCer and mediate transcytosis through an integrin associated mechanism

A Alfsen, 2005
Breastfeeding transmission of HIV-1: by free virions or by HIV-infected cells?
Cumulative HIV-1 RNA exposure in HIV-1 infected and non-infected infants between 6 weeks and estimated age of HIV acquisition

ANRS 1271 Study / VTS

<table>
<thead>
<tr>
<th>Cumulative HIV-1 RNA exposure until HIV infection</th>
<th>Case</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total; N=36 pairs</td>
<td>19.65 x 10^7</td>
<td>1.30 x 10^7</td>
<td><0.001</td>
</tr>
<tr>
<td>Maternal antenatal CD4 >350 cells/µl; N=14 pairs</td>
<td>14.86 x 10^7</td>
<td>1.27 x 10^7</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Neveu D, Clin Infect Dis 2010
Cell-free and cell-associated HIV-1 are both responsible for breast milk transmission (I Koulińska, 2006)

<table>
<thead>
<tr>
<th>HIV-1 Transmission</th>
<th>Cell-free virus</th>
<th>Cell-associated virus</th>
<th>indetermined</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9 m post p</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>> 9 m post p</td>
<td>11</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

p=0.03
Characteristics of T and B lymphocytes from breast milk

Compared to blood, breast milk T and B lymphocytes are

- More frequently memory cells (less naive cells)
- More often activated
- Express markers of homing signing their mucosal origin

(E. Tuaillon et al; J Immunol 2011)
LABORATORY STRATEGY

A

Breast milk cells plus red blood cells of healthy control

Blood

Ficoll Hypaque

Spin

Plasma

Enriched CD4+ T cells

Ficoll-Hypaque

Red blood cells and rosetted cells

Unwanted cells are cross-linked to red blood cells «depletion cocktail »

B

Irradiated cells

Anti-CD28 antibodies

Resting CD4 T cells

Anti-CD3 antibodies

Activated CD4 T cells

HIV-1 antigens

Day

Day 1

Quantification of the HIV-1 DNA by real-time PCR

Enumeration of the HIV-1-Ag SCs by ELISPOT assay

Detection of p24 antigen in supernatants by ELISA
Proportion of latently infected cells able to enter viral cycle

<table>
<thead>
<tr>
<th></th>
<th>Blood</th>
<th>Breast milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 DNA copies</td>
<td>6.948</td>
<td>4.788</td>
</tr>
<tr>
<td>per 10^6 T CD4+ cells</td>
<td>(2.351-23.043)</td>
<td>(2.590-47.294)</td>
</tr>
<tr>
<td>HIV-1 Ag secreting cells</td>
<td>45 (9-108)*</td>
<td>500 (205-934)*</td>
</tr>
<tr>
<td>per 10^6 T CD4+ cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of HIV-1 infected T CD4+ cells entering viral cycle</td>
<td>0.9 - 1.8%</td>
<td>10.4 - 32.4%</td>
</tr>
</tbody>
</table>

Cell activation in breast milk:
- Associated with reactivation of CMV and EBV
- Consistent with cytokine and proteome profiles
Productively infected CD4⁺ T cells from BM

<table>
<thead>
<tr>
<th></th>
<th>Breast milk</th>
<th>Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 DNA copies/10⁶ CD4⁺ T cells</td>
<td>2886</td>
<td>2240</td>
</tr>
<tr>
<td>HIV-1-Ag-SC/10⁶ CD4⁺ T cells (with undetectable HIV-1 RNA)</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>HIV-1-Ag-SC/10⁶ CD4⁺ T cells (with detectable HIV-1 RNA)</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Viral antigens, RNA copies and infectious virus are detected in cell culture supernatants

Valea D et al, Retrovirology 2011

Cells are either activated within BM and the mammary gland or during migration from mucosal inductor sites
Productively infected CD4+ T cells are detectable in ART-treated women with undetectable HIV-1 RNA in blood and breast milk.

Valea D et al, Retrovirology 2011
Antiretroviral drugs in breast milk
Antiretroviral drugs in breast milk of HIV-1 infected women:

- **NRTI**
 - RTV (11%)
 - LPV (11-21%)
 - NFV (21%)
 - NVP (67-82%)

- **NNRTI**
 - NVP (67-82%)

- **PI**
 - NFV (21%)

- **3TC** (300-420%)
 - ZDV (117-140%)
 - d4T (173%)
 - 3TC (300-420%)

* = detectable levels in baby’s blood but at very low concentration

Rezk NL, Ther Drug Monit 2008
Schneider S, JAIDS 2008
Miroschnick M, AACT 2009
Shapiro RL, JID 2006
Infant PreP (Option A)?

- **Until now, unknown efficacy** if infant PreP is extended during the whole duration of exposure (12 months breastfeeding recommended by WHO);

- **Adherence and tolerance** uncompletely explored;

- **Results of the ANRS 12274-PROMISE-PEP trial**
BAN trial (Malawi)

- HIV-infected pregnant women, CD4>250/μl, breastfeeding for max 28 weeks, N=2,369
- Comparison
 - mothers: AZT/3TC/[NVP or NFV or LPV/r]
 - infant: PreP NVP (max 28 weeks)
 - control: perinatal prophylaxis only

- **At 28 w:**
 - **Postnatal transmission (2 to 28 w)**
 - **Inf HIV+ or death**

<table>
<thead>
<tr>
<th></th>
<th>ART in moms</th>
<th>PreP in infants</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART in moms</td>
<td>2.9% (1.9-4.4) (n=21)</td>
<td>1.7% (1.0-2.9) (n=12)</td>
<td>5.7% (4.1-8.0) (n=32)</td>
</tr>
<tr>
<td>PreP in infants</td>
<td>4.1% (2.9-5.8)</td>
<td>2.6% (1.7-4.1)</td>
<td>7.0% (5.1-9.4)</td>
</tr>
<tr>
<td>Control</td>
<td>2.9% (1.9-4.4) (n=21)</td>
<td>1.7% (1.0-2.9) (n=12)</td>
<td>5.7% (4.1-8.0) (n=32)</td>
</tr>
<tr>
<td></td>
<td>4.1% (2.9-5.8)</td>
<td>2.6% (1.7-4.1)</td>
<td>7.0% (5.1-9.4)</td>
</tr>
</tbody>
</table>

Chasela CS, NEJM 2010
ANRS 12174 trial – preliminary data

- Randomised trial of infant PreP extended up to 12 months, 3TC versus LPV/r; Burkina Faso/Uganda/Afrique du Sud/Zambie
- N=1273; Follow up will be completed in April 2013;
- July 2012: unblinded analyses on transmission, tolerance and mortality on the 788 infants aged 12 months or more;
- D7-M12 HIV-1 Transmission rate: 1.1% (95% CI: 0.6-2.2), including 6/9 infections after 6 months (D7-M6 transmission: 0.3%)
- Overall MTCT rate: 1.8%, well within the target of elimination!
- 12 months mortality: 3.2 per 100 inf-yr (95% CI: 1.8-4.5)
- 12 months HIV-free survival : 96% (95% CI: 94-97)
- SAE: 188, none attributable to PreP

Conclusions:
- Transmission rate is the lowest ever observed;
- Compared efficacy and tolerance of the 2 PreP regimens will be known in December 2013

Tylleskär T et al, CROI 2013, Atlanta
Conclusions (1)

1. Do not throw Infant PreP (option A) with the baby’s bath

2. Evidence based versus best guess or model-based international recommendations?

3. Future research?
 - How to operationalise the access to prevention and therapy within national programs?
 - How to optimise existing PMTCT regimens?
 - Infant PreP: a place for long acting ARV drugs?
What about tomorrow?

STR-based ART in all HIV infected pregnant women eligible

+

Infant PreP with a long acting drug covering the whole duration of breastfeeding

Examples: Rilpivirine LA*, GSK744**

* Van ‘t Klooster G, AAC 2010
** Andrews C et al, CROI 2013, Atlanta
Many thanks to...

- **INSERM U 1058, Montpellier, France**
 Edouard Tuaillon, Pierre-Alain Rubbo, Jean-Pierre Moles, Vincent Foulongne, Jérome Solassol, Nicolas Nagot

- **The European-African PROMISE consortium**
 Thorkild Tylleskär, James Tumwine, Chipepo Kankasa, Justus Homyer
 Nicolas Meda

- **Centre Muraz, Bobo-Dioulasso, Burkina Faso**
 Diane Valéa,

- **AFRICA Centre, Durban, South Africa**
 Johannes Viljoen, Siva Danaviah, Marie-Louise Newell

Funds: ANRS, EDCTP, Research Council of Norway