18th Annual Conference of the British HIV Association (BHIVA)

Dr Muge Cevik

Chelsea and Westminster Hospital, London

18-20 April 2012, The International Convention Centre, Birmingham

Polymorphisms at genes involved in the purine metabolic pathway influence the risk of non-cirrhotic portal hypertension (NCPH) in HIV-infected patients

<u>M Cevik¹</u>, Judit Morello², Eugenia Vispo², Jurgen K Rockstroh³, Andrew Scourfield¹, Elena Alverez², Christoph Boesecke³, Sonia Rodriguez-Novoa², Jan-Christian Wasmuth³, Vincent Soriano² and Mark Nelson¹

St Stephen's Centre, Chelsea & Westminster Foundation Trust, London, UK
Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
Department of Medicine I, University of Bonn, Bonn, Germany

18th Annual Conference of the British HIV Association 18-20 April 2012, Birmingham, UK

A09

NHS Foundation Trust

Background 1

- Liver disease in HAART era is one of the leading cause of mortality and morbidity
- Cause of liver abnormalities remain unknown for some groups of HIV positive patients
- NCPH is one of the rare but potentially life threatening complication of HAART

Aetiology of variceal bleeding in 48 HIV patients over 10 years

Scourfield et al. BHIVA 2011 Abstract O6

Background 2

- NCPH described as the features of portal hypertension in the absence of cirrhosis on liver biopsy
- Prior exposure to ddl (+cumulative use) recognized as the most important predisposing factor
- The prevalence of NCPH is very low despite the large number of patients exposed to ddl

ddl exposure and NCPH

	Median month NCPH (n=16)	s exposure (IQR) Cohort (n=6,360)	P-value
AZT	41(10 to 60.5)	20.5(6.3 to 54.8)	0.629
D4T	14.5 (0.0 to 30.5)	28.6(10.8 to 56.6)	0.016
DDI	59.5 (44.5 to 82.0)	21.1(7.18 to 54.33)	<0.001
TDF	35.5 (4.5 to 50.5)	27.4(8.3 to 51.7)	0.583
ABC	13.5 (0 to 59.0)	28.5(12.1 to 67.0)	0.090
3TC or FTC	22.5 (9.0 to 57)	36.5(12.4 to 76.4)	0.237
Any PI	22 (7.5 to 47.5)	30.7(11.2 to 62.7)	0.153
Any NNRTI	65.5 (33.5 to 87.5)	27.5(9.0 to 66.8)	0.053

Proposed mechanisms

- Coagulation and thrombophilia
- Bacterial translocation
- Mitochondrial toxicity
- Chronic HIV related inflammation
- Genetic polymorphism in metabolism
- Endothelial dysfunction

Metabolism of purines and ddl

Objectives

 To investigate the impact of polymorphisms at genes coding enzymes involved in purine metabolic pathway

• To understand the role of genetic background in the development of NCPH

Hypothesis: We hypothesized that some metabolites emerging during ddl metabolism might cause damage in the endothelium of portal vessels.

Methods

- Descriptive case-control study
- The two groups were matched by:
 - Length of ddl exposure,
 - Age
 - Gender

- Exclusion criteria:
 - Coinfection with hepatitis C/B
 - Alcohol abuse
 - Evidence of liver cirrhosis
- Tagging SNPs at 4 enzymes (was performed using SNPlex microarray)
 - inosine triphosphatase
 - 5'-nucleotidase cytosolic II
 - purine nucleoside phosphorylase
 - xanthine oxidase

Metabolism of purines and ddl

Results 1

Demographic and clinical characteristics

Parameter	Median (range)*	
Number of patients [n (M/F)]	80 (53/27)	
Case/Control	22/58	
Age (yr)	47 (44-53)	
ddl exposure (months)	66 (48-86)	
Total SNPs analysed	36	

Genetic polymorphisms influencing the risk of NCPH in HIV

Genetic polymorphisms influencing the risk of NCPH in HIV

Conclusions

 SNPs at the 5'-nucleotidase and xanthine oxidase genes influence the risk of developing NCPH

 Endothelial damage at portal vessels caused by increased levels of harmful purine metabolites of ddl

 Descriptive study, might not influence the clinical management at this stage

Acknowledgements

Hospital Carlos III, Madrid, Spain

Dr Vicente Soriano

Judit Morello

Eugenia Vispo

Elena Alverez

University of Bonn, Bonn, Germany

Dr Juergen Rockstroh

Dr Christoph Boesecke

Dr Jan-Christian Wasmuth

Chelsea Westminster Hospital, London

Dr Mark Nelson

Dr Andrew Scourfield

Sonia Rodriguez-Novoa

