BHIVA ‘Best of CROI’ Feedback Meetings

London | Edinburgh

Wakefield | Cardiff

Birmingham | Haydock

Newcastle
• Testing
• Prevention
• MTCT
• Cure
- Testing
- Prevention
- MTCT
- Cure
RCT of rapid HIV screening in US EDs

- Enhanced targeted screening (Denver risk score) vs traditional risk screening vs non targeted
- 25,000 each arm however only 4000 per arm tested
- 10+ves in non targeted, 7 in each of others
- All 3 strategies worked and were cost effective
- Risk screening probably not worth doing in ED
Pharmacy based HIV testing

- One minute insti test
- No risk assessment or counseling
- 3000+ tests, 25 +ve
- Good coverage of hard to reach groups (men, black africans)
- Most +ves linked to care, only 2 (lost to FU)
Africa’s Youth will Age into Young Adulthood
Age Structure Differs—Southern Africa ahead in demographic shift
Projected Growth: Absolute Increase in Africa’s Young Adult Population

Figure 1. Youth aged 15-24 years, by region, 1950-2060

Need to “Bend the Curve” for Adolescents

- Girls (aged 15-19) Continued progress
- Girls (aged 15-19) Stalled progress
- Boys (aged 15-19) Continued progress
- Boys (aged 15-19) Stalled progress
- All Adolescents (aged 15-19) Continued progress
- All Adolescents (aged 15-19) Stalled progress

AIDS-related deaths have tripled since 2000 in adolescents, while decreasing by 50% in all other age groups.

- Testing
- Prevention
- MTCT
- Cure
On Demand Post-Exposure Prophylaxis with Doxycycline for MSM Enrolled in a PrEP Trial

Hospital Saint-Louis and University of Paris 7, Inserm SC10-US19 Villejuif, Hospital Croix-Rousse, Lyon, Hospital Tenon, Paris, CHU de Nice, AIDES, Pantin, Paris Sud University, France
Study Flow-Chart

Eligible n=299

Randomized n=232

PEP Doxy n=116
- D/C participation n=10
 - Withdrew consent n=5
 - Lost to follow-up n=1
 - Other n=4
- Completed FU n=106 (91%)

No PEP n=116
- D/C participation n=10
 - Withdrew consent n=3
 - Lost to follow-up n=3
 - Other n=4
- Completed FU n=106 (91%)

Not randomized n=67 (22%)
- Not meeting eligibility n=10
- Withdrew consent n=2
- Lost to follow-up n=1
- Patients declined n=54 (19%)
KM Estimates of Time to a First Syphilis (ITT Population)

Log-rank test p=0.04

Median follow-up of 8.7 months (IQR: 7.8-9.7): 13 subjects infected

10 in no PEP arm (incidence: 12.9 / 100 PY), 3 in PEP arm (incidence: 3.7 / 100 PY)

Hazard Ratio: 0.27 (95% CI: 0.07-0.98, p<0.05)
KM Estimates of Time to a First Chlamydia (ITT Population)

Log-rank test $p=0.003$

Median follow-up of 8.7 months (IQR: 7.8-9.7): 28 subjects infected

21 in no PEP arm (incidence: 28.6/100 PY), 7 in PEP arm (incidence: 8.7/100 PY)

Hazard Ratio: 0.30 (95% CI: 0.13-0.70, $p=0.006$)
Conclusions

- PEP with doxycycline reduced the overall incidence of bacterial STIs by 47% in MSM on PrEP (8.7 months of FU)
- No effect on Gonorrhea but strong reduction (70-73%) in Chlamydia and Syphilis incidence
- Acceptable safety profile with mild/moderate GI AEs leading to D/C in only 7% of participants
- No evidence of risk compensation
- Analysis of antibiotic resistance pending
- Long-term benefit of PEP yet unknown
- Antibiotic prophylaxis for STIs still NOT recommended
- More research needed in the field of STIs
Truvada PrEP failure P953

- MSM 20+ sex partners per month
- Good TDP levels at 0 and month 6
- Flu type illness, HIV Ab +, Ag neg, RNA neg
 - Told to stop PrEP
- 2 weeks later RNA detected, wild type virus
- ? Was this PrEP failure or did he get infected after stopping PrEP
- ?hx ivdu- chem sex likely
Pharmacy PrEP P961

- Single arm n=245 (84% MSM ~34 yrs)
- Only 25% had a care provider
- At 1 yr: 75% retention, 1 new HIV
- HIV testing and PrEP in pharmacy highly acceptable
- BUT dedicated PrEP pharmacist
PrEP and microbiome

- IAS 2016 CAPRISA 1% tenofovir gel
 - HIV acquisition associated with absence of lacto bacilli
 - Mechanism proposed: gardnerella degrades TNF
 - Controversial

- Partners PrEP n=1785 oral TDF
 - X sectional study of vaginal swabs
 - BV (nugent score 7-10) was not associated with HIV
 - 73% efficacy v 77% efficacy
Impact of vaginal microbiota on tenofovir

- 1% TNF gel for 1 week.
- Samples taken day 0 & 7
- BV associated with low TNF levels in vaginal fluid and plasma
- Effect present within 2 hours of dosing
Male Circumcision O87

- VMMC highly effective. mechanism unknown
- VMMC Controls from Rakai cohort
- 16S qPCR of foreskin swabs
- HIV neg (n=136) v HIV seroconverted (n=46)
- HIV acquisition was associated with prevotella, anaerobes and IL-8
 - Modifiable
 - Could they be passing BV to female partners?
• Testing
• Prevention
• MTCT
• Cure
PrEP and pregnancy

- Partners PrEP
 - N=30 pregnancies:
 - No pregnancy loss
 - No preterm delivery
 - No poor infant growth
Results (5) - Kaplan-Meier estimate of time from sample collection to initiation of antiretroviral therapy

POC (median = 0 days)

SOC (median = 127 days)

(p<0.001)
Figure 1. Breast milk HIV RNA levels

 DETECTION OF HIV IN BREAST MILK AMONG PREGNANT/POSTPARTUM WOMEN WITH RECENT HIV

Alison L. Drake1, John Kinuthia2, Daniel Matemo2, Barbra A. Richardson1, Sandy Emery2, Vrasha Chohan3, Julie Overbaugh3, Grace John-Stewart1

1Univ of Washington, Seattle, WA, USA, 2Kenyatta Natl Hosp, Nairobi, Kenya, 3Fred Hutchinson Cancer Rsr Cntr, Seattle, WA, USA
MTCTM: birth outcomes 025
Update from PROMISE on pregnancy outcomes

The use of LPV/r-containing antiretroviral regimens (TDF+FTC+LPV/r, ZDV+3TC+LPV/r) was associated with an elevated risk for PTD and LBW, when compared to antenatal ZDV alone.

ZDV+3TC+LPV/r had a somewhat higher risk for severe outcomes, relative to the ZDV alone arm, but this was not statistically significant. However, the TDF+FTC+LPV/r arm had a significantly higher risk than either of the other arms.
Do HIV+ women on PIs deliver pre-term (UK & Ireland cohort)

Fig 1 Adjusted OR for PTD stratified by ART at conception and CD4 count (≤350 and >350 cells/mm³)
It’s not the TDF (data from US cohorts)

Table 2. Risk of outcomes by initial regimen

<table>
<thead>
<tr>
<th>Initial antiretroviral regimen during pregnancy</th>
<th>TDF/FTC/LPV/r</th>
<th>TDF/FTC/ATV/r</th>
<th>ZDV/3TC/LPV/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>n Risk (%)</td>
<td>n Risk (%)</td>
<td>n Risk (%)</td>
<td></td>
</tr>
<tr>
<td>Preterm birth</td>
<td>27 (21.4)</td>
<td>86 (16.1)</td>
<td>184 (19.5)</td>
</tr>
<tr>
<td>Very preterm birth</td>
<td>5 (4.0)</td>
<td>26 (4.9)</td>
<td>44 (4.7)</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>30 (23.8)</td>
<td>86 (16.2)</td>
<td>175 (18.8)</td>
</tr>
<tr>
<td>Very low birth weight</td>
<td>1 (0.8)</td>
<td>10 (1.9)</td>
<td>18 (1.9)</td>
</tr>
<tr>
<td>Adverse outcome</td>
<td>36 (28.1)</td>
<td>127 (23.7)</td>
<td>256 (27.2)</td>
</tr>
<tr>
<td>Severe adverse outcome</td>
<td>7 (5.5)</td>
<td>28 (5.2)</td>
<td>51 (5.4)</td>
</tr>
</tbody>
</table>

Table 3. Risk ratios and 95% confidence intervals for infant outcomes based on comparisons of initial antiretroviral regimen used during pregnancy

<table>
<thead>
<tr>
<th></th>
<th>TDF/FTC/LPV/r vs ZDV/3TC/LPV/r</th>
<th>TDF/FTC/ATV/r vs ZDV/3TC/LPV/r</th>
<th>TDF/FTC/LPV/r vs TDF/FTC/ATV/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude 95% CI</td>
<td>Adjusted 95% CI</td>
<td>Crude 95% CI</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>1.10 (0.77, 1.58)</td>
<td>0.95 (0.66, 1.39)</td>
<td>0.83 (0.65, 1.04)</td>
</tr>
<tr>
<td>Very preterm birth</td>
<td>0.85 (0.19, 2.11)</td>
<td>1.04 (0.65, 1.68)</td>
<td>0.82 (0.32, 2.08)</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>1.27 (0.90, 1.78)</td>
<td>1.08 (0.76, 1.54)</td>
<td>0.86 (0.68, 1.09)</td>
</tr>
<tr>
<td>Very low birth weight</td>
<td>0.41 (0.06, 3.06)</td>
<td>0.97 (0.45, 2.10)</td>
<td>0.42 (0.05, 3.27)</td>
</tr>
<tr>
<td>Adverse outcome</td>
<td>1.03 (0.77, 1.39)</td>
<td>0.90 (0.66, 1.23)</td>
<td>0.87 (0.72, 1.05)</td>
</tr>
<tr>
<td>Severe adverse outcome</td>
<td>1.01 (0.47, 2.17)</td>
<td>0.96 (0.61, 1.51)</td>
<td>1.04 (0.47, 2.34)</td>
</tr>
</tbody>
</table>
What happens after pregnancy

FIGURE 1. PROMISE 1077HS study design

- 1917 Screened
- 1653 Enrolled
- 1 withdrew

TABLE 2. Pregnancy outcomes recorded for the initial subsequent pregnancy

<table>
<thead>
<tr>
<th></th>
<th>HS Randomization Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuation of HAART (N=140)</td>
</tr>
<tr>
<td>Live Birth</td>
<td>100 (71%)</td>
</tr>
<tr>
<td>Spontaneous Abortion (<20 weeks)</td>
<td>27 (19%)</td>
</tr>
<tr>
<td>Stillbirth (IUFD ≥ 20 weeks)</td>
<td>6 (4%)</td>
</tr>
<tr>
<td>Spontaneous Abortion or Stillbirth</td>
<td>33 (24%)</td>
</tr>
</tbody>
</table>
And just to add to the bad news

Weight for Age Z-score (WAZ)

<table>
<thead>
<tr>
<th>Comparison of WAZ between the two arms</th>
<th>Real Data</th>
<th>Least Squares Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LPV/r</td>
<td>Lamivudine</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Data censored at the end of treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 weeks</td>
<td>541</td>
<td>547</td>
</tr>
<tr>
<td>26 weeks</td>
<td>474</td>
<td>487</td>
</tr>
<tr>
<td>50 weeks</td>
<td>115</td>
<td>128</td>
</tr>
</tbody>
</table>

Spline regression model for WAZ

- Overall, the Mixed Model showed a significant increase of the WAZ difference between arms over time (p<0.01)
- The Spline Model confirmed this result, and showed that the WAZ difference between arms occurred early (p=0.02, Knot=118 days).
And finally two PK studies showing significantly reduced concentrations in pregnancy.
Elvitegravir but not Cobi crosses the placenta

Figure 5. Infant Elvitegravir Concentrations

<table>
<thead>
<tr>
<th>EVG</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (ng/mL)</td>
<td>358 (140 - 519)</td>
</tr>
<tr>
<td>T_{max} (hr)</td>
<td>4.4 (3.1 – 7.5)</td>
</tr>
<tr>
<td>$T_{1/2}$ (hr)</td>
<td>7.4 (5.9 – 8.8)</td>
</tr>
</tbody>
</table>
Substantially lower rilpivirine conc in pregnancy

Cord:maternal ratio 0.5

2/16 had sub-therapeutic rilpivirine in T3

Figure 1: Mean (±%CV) concentration-time profile after administration of RPV 25mg QD during third trimester and postpartum

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameters</th>
<th>Third Trimester (n=16)</th>
<th>Postpartum (n=15)</th>
<th>GM Ratio (%) [90% CI] Third trimester / postpartum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC$_{0-24h}$ (h*mg/L)</td>
<td>1.71 (37)</td>
<td>3.04 (39)</td>
<td>55 (46-66)</td>
</tr>
<tr>
<td>C$_{max}$ (mg/L)</td>
<td>0.11 (36)</td>
<td>0.17 (34)</td>
<td>65 (55-76)</td>
</tr>
<tr>
<td>C$_{min}$ (mg/L)</td>
<td>0.05 (50)</td>
<td>0.10 (42)</td>
<td>51 (41-63)</td>
</tr>
</tbody>
</table>
Rilpivirine PK in pregnancy is highly variable

25mg daily with 500 Cal food 1 hour after medication

<table>
<thead>
<tr>
<th></th>
<th>T3 (n=30)</th>
<th>PP (n = 28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC ng*hr/mL (range)</td>
<td>1669 (556 – 4312)</td>
<td>2387 (188 – 6736)</td>
</tr>
<tr>
<td>C 24hr ng/ml</td>
<td>56 (<10 – 181)</td>
<td>81 (<10 – 299)</td>
</tr>
<tr>
<td><10th centile AUC 0-24</td>
<td>2/28 (7%)</td>
<td>3/28 (11%)</td>
</tr>
</tbody>
</table>

Cord /Maternal blood ratio 0.55

One subject had <LDL at C24 despite observed dosing – either poor absorption or increased clearance

Tran et al JAIDS 2016;72:289-296
• Testing
• Prevention
• MTCT
• Cure
HIV PERSISTENCE AND REACTIVATION

VIRAL CONTROL INDUCED BY HIVCONSV VACCINES & ROMIDEPSIN IN EARLY TREATED INDIVIDUALS

Beatriz Mothe

IrsiCaixa-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
Background

• Early_cART during PHI has shown benefits in immune recovery\(^1,2\) and in limiting latent reservoir size\(^3,4\).
• Conserved therapeutic vaccines may help to tackle HIV-1 viral diversity in the viral reservoir driven by immune escape\(^5,6,7\).
• BCN 01 trial (NCT01712425) refocused T cells towards highly conserved regions of HIV-1 in early treated individuals but did not impact the viral reservoir size\(^8\).
• Combination of vaccines with drugs that reactivate latent virus (Kick & Kill) may be required to clear the viral reservoir\(^9\).

\(^1\)Le, 2013; \(^2\)Fidler, 2013; \(^3\)Ananworanich, 2014; \(^4\)Hocqueloux, 2013
\(^5\)Rolland, 2007; \(^6\)Letourneau, 2007; \(^7\)Deng, 2015; \(^8\)Mothe, CROI 2016, PO 320;
Methods

pVL pre
Acute / recent HIV-1
24s ChAd MVA
Extension BCN 01-RO
4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

HIVconv CTL
Total HIV CTL

Proviral DNA

Effect on viral rebound

Mothe B. et al, BCN 02
CROI 2017 - 1191-P
Monitored Antiretroviral Pause (MAP)

- 13 participants have interrupted cART to date.

8/13

5/13

Plasma HIV-1 RNA copies/ml

pre cART 0 4

weeks OFF cART

Percent OFF cART

BCN 02 (n=13)
TIBET (n=93)
RV411 (n=8)

p=0.0027

Ruiz, 2007; Colby, #124; Leal, #336; Genevieve, 2017; Saez-Cirion, 2013; Rosenberg, 2010; Cockerhan, 2016
Conclusions

- This is the first therapeutic vaccine trial reporting a durable control of HIV-1 after cART cessation in a substantial proportion of patients (≈35-38%, so far >12-24wks).
- BCN 02 data suggest that viral control can be achieved by an effective redirection of CTL towards conserved regions in the context of a limited viral reservoir.

![Diagram]

Early & Prolonged cART

↑ Viremic control

↓ Levels proviral DNA
↓ Diversity / Escaped virus

BCN 02
MVA_{boost} + LRA

↑ Functional T-cells / ↓ Exhaustion
↑ Plasticity to Red Educate CTL by 1st CM vaccination

°Rosas, CROI 2017, PO 271
Mothe B. et al, BCN 02
BHIVA ‘Best of CROI’ Working Party 2017

Dr Tristan Barber
Dr Sanjay Bhagani
Dr David Chadwick
Dr Duncan Churchill
Mr Simon Collins
Dr Alessia Dalla Pria
Dr Sarah Duncan
Dr Julie Fox
Dr Andrew Freedman
Professor Saye Khoo
Professor Clifford Leen

Dr Rebecca Metcalfe
Professor Chloe Orkin
Dr Katrina Pollock
Dr Adrian Palfreeman
Dr Frank Post
Dr Iain Reeves
Dr Rebecca Simons
Ms Sonali Sonecha
Professor Graham Taylor
Dr Steve Taylor
Dr Hiten Thaker