Dr Patrick Mallon
University College Dublin
PLATELET FUNCTION UPON SWITCHING TO TAF VS CONTINUING ABC: A RANDOMISED SUBSTUDY

Patrick W. Mallon¹, Alan Winston², Frank Post³, Dermot Kenny⁴, Colm Bergin⁵, Robert T. Maughan¹, Elena Alvarez-Barco¹, Willard Tinago¹, Eimear Dunne⁴, Mingjin Yan⁶, Moupali Das⁶, Martin Rhee⁶

¹University College Dublin, Ireland; ²Imperial College London, UK; ³King's College Hospital NHS Foundation Trust, London, UK; ⁴Royal College of Surgeons in Ireland, Dublin, Ireland; ⁵St. James's Hospital, Dublin, Ireland; ⁶Gilead Sciences, Inc., Foster City, CA, USA
Disclosures

Speaker Bureau / Honoraria:

- ViiV Healthcare, Merck Sharpe and Dohme, Gilead, Janssen Cilag (Tibotec), Bristol Myers Squibb

Research funding / educational grants:

- Science Foundation Ireland
- Health Research Board (Ireland)
- Wellcome Trust
- GlaxoSmithKline / ViiV Healthcare
- Gilead Sciences
- Bristol Myers Squibb
- Janssen Cilag (Tibotec)
- Merck Sharpe and Dohme
Background

- PLWH (People living with HIV) are at increased risk of myocardial infarction

- Cardiovascular (CV) disease in PLWH has multifactorial etiology
 - Traditional risk factors
 - HIV infection
 - Antiretroviral agents

- Many studies (eg, D:A:D) show association of abacavir (ABC) with CV events
 - Others did not, including meta-analysis of randomised studies
 - No CV signal in registrational studies, underlying mechanistic effect likely subtle
 - The association also appears reversible, pointing to platelet dysfunction as a potential mechanism

D:A:D, data collection on adverse events of anti-HIV drugs.
Platelet Activation, Thrombosis and M.I.

Changes in systemic environment:

- Liver
- Inflammation (HIV)
- Acute Coronary Syndrome
- Drugs

- Collagen
- GPVI
- sGPVI
- ADP
- Thromboxane
- Epinephrine
- Thrombin

Platelet

ACTIVATION

Aggregation

Thrombosis

Infarction
Platelet Reactivity - Aggregation

- Increased platelet aggregation associated with CVD events\(^1\)
- Platelet reactivity measured by aggregometry\(^2\)
- ABC associated with more reactive platelets (cross-sectional study)

\[\text{Platelet Aggregation, \%} \]

\[
\begin{align*}
\text{Log [ADP] Concentration, \(\mu\text{M}\)} & \quad 0 & \quad 0.5 & \quad 1.0 & \quad 1.5 \\
\text{Platelet Aggregation, \%} & \quad 0 & \quad 50 & \quad 100 \\
\end{align*}
\]

\(p=0.008\)

Platelet Reactivity - Aggregation

• Increased platelet aggregation associated with CVD events\(^1\)
• Platelet reactivity measured by aggregometry\(^2\)
• ABC associated with more reactive platelets (cross-sectional study)

Platelet Reactivity - Aggregation

- Increased platelet aggregation associated with CVD events\(^1\)
- Platelet reactivity measured by aggregometry\(^2\)
- ABC associated with more reactive platelets (cross-sectional study)

\[\text{Platelet Aggregation, } \%
\]

\[\log [\text{ADP}] \text{ Concentration, } \mu\text{M}
\]

\[\text{EC}_{50} \quad p=0.008
\]

1. Trip MD et al. NEJM 1990; 322(22):1549-54
2. Satchell CS et al. JID 2011; 204(8):1202-10
Platelet Function: Glycoprotein VI (GPVI) and Abacavir

• Collagen receptor – expressed on platelets

• Conventional wisdom- ‘increases’ in soluble GPVI associated with cardiovascular events – acute ischaemic stroke

Platelet Function: Glycoprotein VI (GPVI) and Abacavir

- ‘Lower’ sGPVI levels in PLWH prior to CAD (Case-control study)³
- Persistently ‘lower’ sGPVI in those remaining on ABC⁴

SWIFT Trial⁴
(virologically suppressed, switching from ABC to TDF vs remaining on ABC)

- Collagen receptor – expressed on platelets¹
- Conventional wisdom- ‘increases’ in soluble GPVI associated with cardiovascular events – acute ischaemic stroke²

Aims

To determine changes in GPVI function and associated platelet reactivity in a group of virologically-suppressed PLWH switching away from ABC to TAF (Study 1717)
Aims

To determine changes in GPVI function and associated platelet reactivity in a group of virologically-suppressed PLWH switching away from ABC to TAF (Study 1717)

Hypothesis

Switch from ABC to TAF would result in:

1. Decreases in platelet reactivity measured by aggregometry
2. Increases in soluble GPVI (based on findings from the SWIFT study¹)

¹ O’Halloran J et al. AIDS 2018. Feb 12 [Epub ahead of print]
Study Design: Switch from ABC/3TC to TAF/FTC

Phase 3, randomised, double-blind, active-controlled study in US and EU (Study 1717) (Primary endpoint at Week 48)

ABC/3TC + Third Agent
N=556
- HIV-1 RNA <50 c/mL for ≥6 mo
- No CD4 criteria
- Estimated CrCL ≥50 mL/min
- No single tablet regimen allowed

TAF/FTC OD
n=280
Continue Third Agent

ABC/3TC OD
n=276
Continue Third Agent

Week 0 12 48 96
Study 1717 Platelet Substudy

Study Design: Switch from ABC/3TC to TAF/FTC

Phase 3, randomized, double-blind, active-controlled study in US and EU (Study 1717) (Primary endpoint at Week 48)

ABC/3TC + Third Agent
N=556
 • HIV-1 RNA <50 c/mL for ≥6 mo
 • No CD4 criteria
 • Estimated CrCL ≥50 mL/min
 • No single tablet regimen allowed

Platelet Substudy
n=61
From four clinical sites in Dublin and London

TAF/FTC QD
Continue Third Agent

ABC/3TC QD
Continue Third Agent

3TC, lamivudine; FTC, emtricitabine
Methods

Platelet reactivity measured using aggregometry at baseline, Week 4 and Week 12

- Five platelet agonists*
- Between-group comparison of population EC$_{50}$ by F-test

*Adenosine diphosphate (ADP), collagen, epinephrine, and thrombin receptor-activating peptide (TRAP) and arachidonic acid;
Methods

Platelet reactivity measured using aggregometry at baseline, Week 4 and Week 12

• Five platelet agonists*
• Between-group comparison of population EC$_{50}$ by F-test

Platelet surface markers at baseline and week 12

• GPVI, CD42b [GP1bA] and P-selectin [CD62P]†
• Single-colour flow cytometry
• GPVI shedding induced by collagen-related peptide
• Between-group comparison by Wilcoxon rank sum test

Assays performed on fresh whole blood (citrate)

*Adenosine diphosphate (ADP), collagen, epinephrine, and thrombin receptor-activating peptide (TRAP) and arachidonic acid;
†GPVI kind gift from Liz Gardiner and Rob Andrews from Monash University, Melbourne.
Methods

Platelet reactivity measured using aggregometry at baseline, Week 4 and Week 12

- Five platelet agonists*
- Between-group comparison of population EC$_{50}$ by F-test

Platelet surface markers at baseline and week 12

- GPVI, CD42b [GP1bA] and P-selectin [CD62P]†
- Single-colour flow cytometry
- GPVI shedding induced by collagen-related peptide
- Between-group comparison by Wilcoxon rank sum test

Assays performed on fresh whole blood (citrate)

Sample size: 40 per arm

- 80% power to determine between-group difference of 15% in platelet aggregation (p <0.05)

*Adenosine diphosphate (ADP), collagen, epinephrine, and thrombin receptor-activating peptide (TRAP) and arachidonic acid;
†GPVI kind gift from Liz Gardiner and Rob Andrews from Monash University, Melbourne.
Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Main Study</th>
<th>Platelet Substudy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAF/FTC n=280</td>
<td>ABC/3TC n=276</td>
</tr>
<tr>
<td>Age, y (range)</td>
<td>52 (20, 79)</td>
<td>52 (24, 74)</td>
</tr>
<tr>
<td>Female, %</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>White, %</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>CD4 count, cells/mm³</td>
<td>654 (489, 849)</td>
<td>700 (546, 891)</td>
</tr>
<tr>
<td>Duration on ABC/3TC, yrs</td>
<td>8 (3, 11)</td>
<td>8 (4, 11)</td>
</tr>
<tr>
<td>Platelet count, x10⁹/µl</td>
<td>220 (182, 254)</td>
<td>218 (181, 259)</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Hyperlipidemia, %</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Cardiovascular disease, %</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Data are median (IQR) or %, unless specified otherwise.
Platelet Reactivity in Response to Collagen

- Higher collagen EC$_{50}$ (i.e., less reactive platelets) in TAF/FTC group at both Weeks 4 and 12
Platelet Reactivity in Response to Collagen

- Higher collagen EC$_{50}$ (i.e., less reactive platelets) in TAF/FTC group at both Weeks 4 and 12
- Similar results seen with TRAP and ADP but not with Epinephrine or Arachidonic Acid
Platelet Reactivity in Response to TRAP

- Higher TRAP-EC$_{50}$ (i.e., less reactive platelets) in TAF/FTC group at Weeks 4
Platelet Reactivity in Response to ADP

- Higher ADP EC\textsubscript{50} (i.e. less reactive platelets) in TAF/FTC group at Week 4
Platelet Reactivity in Response to ADP

- No evaluable between-group differences with epinephrine or arachidonic acid
Higher platelet surface GPVI expression in the TAF/FTC group at week 12
Soluble GPVI Expression

Higher platelet surface GPVI expression in the TAF/FTC group at week 12
Greater increases in sGPVI expression in the TAF/FTC group to week 48
Higher platelet surface GPVI expression in the TAF/FTC group at week 12

Not mediated through changes in GPVI shedding
Soluble GPVI

Mean Change in sGPVI, %

<table>
<thead>
<tr>
<th></th>
<th>Week 0</th>
<th>Week 4</th>
<th>Week 12</th>
<th>Week 24</th>
<th>Week 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAF/FTC</td>
<td>0</td>
<td>4</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>ABC/3TC</td>
<td>0</td>
<td>4</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

TAF/FTC, n= 268 261 259 252 229
ABC/3TC, n= 267 259 259 255 243

Platelet surface CD42b and P-selectin expression

No difference in platelet CD42b or P-selectin expression at baseline or week 12.
Limitations

- Did not attain full recruitment targets
- Study not designed to measure clinical cardiovascular events
- Did not recruit participants with pre-existing renal dysfunction
- Aggregometry assay produces population level EC$_{50}$ which are not amenable to normal adjustment for covariates
Conclusions

Switching from ABC/3TC to TAF/FTC was associated with:

- Early (week 4 and week 12) decreases in platelet reactivity induced by collagen

Conclusions

Switching from ABC/3TC to TAF/FTC was associated with:

- Early (week 4 and week 12) decreases in platelet reactivity induced by collagen
- Increases in expression of collagen receptor - GPVI – on platelets at week 12

Conclusions

Switching from ABC/3TC to TAF/FTC was associated with:

• Early (week 4 and week 12) decreases in platelet reactivity induced by collagen
• Increases in expression of collagen receptor - GPVI – on platelets at week 12
• Increases in soluble GPVI that persisted to week 48

Conclusions

Switching from ABC/3TC to TAF/FTC was associated with:

• Early (week 4 and week 12) decreases in platelet reactivity induced by collagen

• Increases in expression of collagen receptor - GPVI – on platelets at week 12

• Increases in soluble GPVI that persisted to week 48\(^1\)

Suggests coordinated changes in platelet-collagen interactions mediated through the GPVI pathway with removal of ABC.

Conclusions (2)

Results suggest an inherent platelet defect in participants on ABC:
- increased platelet reactivity
- decreased expression of both platelet surface GPVI and soluble GPVI
- reversed with switch from ABC

These data implicate platelet dysfunction as a viable, robust and consistent mechanism to explain how ABC contributes to a reversible, increased risk of myocardial infarction
Acknowledgements

Study participants

Platelet sub-study team:

Gilead Sciences (Martin Rhee, Moupali Das), Imperial College London (Alan Winston, Andrew Lovell, Maryam Khan, Myra McClure, Ken Legg, Michael Wood, Jasmini Alagaratnam, Tommy Pasvol), King’s College Hospital NHS Foundation Trust (Frank Post, Priya Bhagwandin, Leigh McQueen, Oluwayomi Adegbaju, Lucy Campbell, Emily Wandolo), Royal College of Surgeons in Ireland (Dermot Kenny, Eimear), St James’ Hospital, Dublin (Colm Bergin, Maria Gannon, Miriam Moriarty), University College Dublin (Patrick Mallon, Elena Alvarez-Barco, Willard Tinago, Robert Maughan, Alejandro Abner Garcia Leon, Jane O’Halloran).
Acknowledgements

We extend our thanks to:

The participants, their families and all participating study investigators and staff:

This study was funded by Gilead Sciences, Inc.