Immunological manifestations of increasing age, ART duration and time since diagnosis within the ageing HIV-1\(^+\) cohort

Dr SJ Westrop\(^1\)

S Mandalia\(^2\), G Moyle\(^2\), M Bower\(^3\), M Nelson\(^2\) and N Imami\(^1\)

\(^1\)Department of Medicine, Imperial College London, \(^2\)Department of HIV/GU Medicine and \(^3\)Department of Surgery and Cancer, Chelsea and Westminster Hospital
The Ageing Cohort (n=6106)

- Median age in 1996-2000 = 33 years
- Increase of 8 years during 14 year follow-up period
- Median age in 2010 = 41 years

(see abstract #P118, S Mandalia et al.)
Objectives

• Delineating the compounded effects of age and HIV-1 on the immune profile and disease prognosis is relevant for future therapeutics including potential immune reconstitution.

• Aim to assess impact of patient age on T-cell subset distribution, phenotype and functional memory responses to HIV-1, CMV and tetanus toxoid (TTox).
Methods

• Cross sectional analysis of 58 patients all receiving cART

• To assess relationship of patient age with

 ▪ T-cell Function:
 - IL-2, IFN-γ, Perforin, proliferation in response to
 - HIV-1 Gag peptides, CMV and TTox

 ▪ T-cell Phenotype:
 - differentiation (CD27/CD28; early, intermediate and late)
 - activation (HLA-DR/CD38)
 - co-stimulation/inhibition (CD28/CTLA-4)
 - senescence/exhaustion (CD57/PD-1)
Methods

• Multivariable model to identify significant independent predictors of T-cell phenotype and function incorporating:
 - Patient age
 - Time since HIV-1+ diagnosis
 - ART Duration
 - Nadir CD4 count
 - Current CD4 count
 - Current CD8 count
<table>
<thead>
<tr>
<th></th>
<th>Age, years</th>
<th>Year of HIV-1+ diagnosis</th>
<th>Time since HIV-1+ diagnosis, years</th>
<th>ART duration, years</th>
<th>Nadir CD4+ T-cell count, cells/µl blood</th>
<th>CD4+ T-cell count, cells/µl blood</th>
<th>CD8+ T-cell count, cells/µl blood</th>
<th>Viral load, HIV-1 RNA copies/ml plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>47.7</td>
<td>1996</td>
<td>13.7</td>
<td>10.5</td>
<td>137</td>
<td>488</td>
<td>801</td>
<td>49</td>
</tr>
<tr>
<td>Range</td>
<td>29.1 to 70.9</td>
<td>1984 to 2010</td>
<td>0.6 to 26.3</td>
<td>0.4 to 21.2</td>
<td>4 to 677</td>
<td>195 to 1426</td>
<td>271 to 1697</td>
<td>49</td>
</tr>
<tr>
<td>IQR</td>
<td>42.0 to 52.0</td>
<td>1990 to 2002</td>
<td>7.8 to 19.9</td>
<td>3.5 to 17.9</td>
<td>50 to 228</td>
<td>386 to 664</td>
<td>605 to 950</td>
<td>49</td>
</tr>
</tbody>
</table>
Study Cohort (n=58)

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Year of HIV-1(^+) diagnosis</th>
<th>Time since HIV-1(^+) diagnosis, years</th>
<th>ART duration, years</th>
<th>Nadir CD4(^+) T-cell count, cells/µl blood</th>
<th>CD4(^+) T-cell count, cells/µl blood</th>
<th>CD8(^+) T-cell count, cells/µl blood</th>
<th>Viral load, HIV-1 RNA copies/ml plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>47.7</td>
<td>1996</td>
<td>13.7</td>
<td>10.5</td>
<td>137</td>
<td>488</td>
<td>801</td>
</tr>
<tr>
<td>Range</td>
<td>29.1 to 70.9</td>
<td>1984 to 2010</td>
<td>0.6 to 26.3</td>
<td>0.4 to 21.2</td>
<td>4 to 677</td>
<td>195 to 1426</td>
<td>271 to 1697</td>
</tr>
<tr>
<td>IQR</td>
<td>42.0 to 52.0</td>
<td>1990 to 2002</td>
<td>7.8 to 19.9</td>
<td>3.5 to 17.9</td>
<td>50 to 228</td>
<td>386 to 664</td>
<td>605 to 950</td>
</tr>
</tbody>
</table>

![Graphs showing correlations](image)
Patient Age

T-cell Function

IL-2 response CMV

\[r^2 = 0.570 \]

\[p = 0.049 \]

IFN-γ response HIV-1 Gag\textsubscript{MHCI}

\[r^2 = 0.257 \]

\[p = 0.038 \]

Patient age corrected for:
- Time since HIV-1+ diag.
- ART Duration
- Current CD4 count
- Nadir CD4 count
- Current CD8 count

Significant independent predictor with 95% confidence intervals

T-cell Phenotype

CD4 intermediate

\[r^2 = 0.436 \]

\[p = 0.016 \]

CD8 early

\[r^2 = 0.309 \]

\[p = 0.010 \]

Patient age corrected for:
- Time since HIV-1+ diag.
- ART Duration
- Current CD4 count
- Nadir CD4 count
- Current CD8 count

Significant independent predictor with 95% confidence intervals
ART Duration corrected for
- Patient Age
- Time since HIV-1\(^+\) diag.
- Current CD4 count
- Nadir CD4 count
- Current CD8 count

Significant independent predictor with 95% confidence intervals
Time Since HIV-1+ Diagnosis and Nadir

T-cell Phenotype

CD4 activated

\[
\begin{align*}
\% \text{CD3+CD4+} & \quad 100 \\
\text{CD3+HLA-DR+ events} & \quad 80 \\
0 & \quad 20 \\
5 & \quad 60 \\
10 & \quad 40 \\
15 & \quad 0 \\
20 & \quad 0 \\
25 & \quad 0
\end{align*}
\]

Time since HIV-1+ diagnosis, years

\[r^2 = 0.256, \quad p = 0.042\]

Time HIV-1+ corrected for

- Patient Age
- ART duration
- Nadir CD4 count
- Current CD4 count
- Current CD8 count

Significant independent predictor with 95% confidence intervals
Current CD4 and CD8 Counts

T-cell Phenotype

CD8 early

Current CD4 count, cells/µL blood

CD4 activated

Current CD4 count, cells/µL blood

<table>
<thead>
<tr>
<th>Current CD4 corrected for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Age</td>
</tr>
<tr>
<td>Time since HIV-1+ diag.</td>
</tr>
<tr>
<td>ART duration</td>
</tr>
<tr>
<td>Nadir CD4 count</td>
</tr>
<tr>
<td>Current CD8 count</td>
</tr>
</tbody>
</table>

$\text{Current CD4 corrected for}$

| $r^2=0.309$ p = 0.007 |
| $r^2=0.250$ p = 0.007 |

Significant independent predictor with 95% confidence intervals
Summary

As patient **Age** increases it can be predicted that

- ↑ IFN-γ production to Gag$_{MHC}$, intermediate CD4
- ↓ IL-2 production to CMV, early CD8

Longer HIV-1 infection (**Time Since HIV-1$^+$ Diagnosis**) predicts an

- ↑ Activated CD4

Increased **ART Duration** is associated with

- ↑ Intermediate CD4
- ↓ Activated CD4, early CD4
Summary

Further support for early initiation of ART is demonstrated by

Nadir CD4

↑ Intermediate CD4
↓ Activated CD4

Current CD4

↑ Early CD4, early CD8
↓ Activated CD4

Current CD8

↑ Activated CD4
Although age is an important explanatory factor in immunological prognosis, T-cell function and phenotype, these data support early initiation and extended duration of cART (at a stage when CD4 counts are high, CD8 counts low, and time since HIV-1 diagnosis short) regardless of patient age.
Acknowledgements

Patients and Staff of the St Stephen’s Centre