Dr Emma Page

Imperial College London
Alterations in the balance of Th1 cells to Th17 and Th22 cells in HIV-1/HCV co-infection is associated with immune activation, microbial translocation and liver fibrosis

EE Page, L Greathead, R Metcalf, M Hart, SA Clark, A Boasso, D Fuchs, M Anderson, F Gotch, B Gazzard, M Nelson, P Kelleher
Background

- HIV/HCV: more rapid & frequent progression to liver fibrosis\(^1\)

- Mechanisms driving liver fibrosis likely multiple & complex

- Increased microbial translocation may drive liver fibrosis:
 - promoting systemic immune activation\(^2\)-\(^4\)
 - LPS signalling via TLR4 in the liver\(^5\)

- Th17\(^6\) & Th22\(^7\) cells:
 - Integral to maintaining the immune integrity of the gut mucosa
 - Depletion in HIV may lead to increased microbial translocation

- CD4 T cell subsets have interdependent relationships
 - Ratios more important than proportions in determining immune control
 - Th17 & Th1 cells have reciprocal relationship

Hypothesis

Alterations in Th1, Th17 and Th22 cells in HIV-1 infection are associated with microbial translocation and immune activation and the rapid development of fibrotic liver disease in HIV-1/HCV co-infection.
Methods (1)

- Cross-sectional study
- Groups:
 1. HC
 2. HCV
 3. HIV ART
 4. HIV NAÏVE
 5. HCV HIV ART
 6. HCV HIV NAÏVE

- Blood samples:
 - 6 colour flow cytometry to determine CD4 T cell subsets frequencies:
 1. Th1 (CXCR3+CCR5+)
 2. Treg (CD25+CD127lo)
 3. Th17 (CCR4+CCR6+CCR10-)
 4. Th22 (CCR4+CCR6+CCR10+)
Methods (3)

• Blood samples (continued):
 – ELISAs on serum
 • Neopterin (marker of immune activation)
 • LBP (markers of microbial translocation)

• FibroScan

• Statistical analysis: (Graphpad Prism version 5.0)
 – Categorical variables: Chi-squared analysis / Fisher’s exact test
 – Continuous variables: Kuskal Wallis test with Dunn’s post test
 (to correct for multiple comparisons)
 – Correlations: Spearman’s rank correlation coefficient
 \(r = +/- 0.5000 \) taken as significant
Baseline demographic and clinical data

<table>
<thead>
<tr>
<th></th>
<th>TOTAL (n=101)</th>
<th>HC (n=16)</th>
<th>HCV (n=21)</th>
<th>HIV ART (n=16)</th>
<th>HIV NAÏVE (n=20)</th>
<th>HCV HIV ART (n=18)</th>
<th>HCV HIV NAÏVE (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE in years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>40.5 (12.35)</td>
<td>52.4 (8.39)</td>
<td>47.7 (11.44)</td>
<td>40.3 (8.09)</td>
<td>44.9 (6.39)</td>
<td>43.7 (7.81)</td>
<td></td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male: n (%)</td>
<td>15 (94)</td>
<td>16 (76)</td>
<td>16 (100)</td>
<td>16 (80)</td>
<td>17 (94)</td>
<td>9 (90)</td>
<td></td>
</tr>
<tr>
<td>ETHNICITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White: n (%)</td>
<td>15 (94)</td>
<td>13 (62)</td>
<td>13 (81)</td>
<td>16 (80)</td>
<td>14 (77)</td>
<td>7 (70)</td>
<td></td>
</tr>
<tr>
<td>Hispanic: n (%)</td>
<td>0 (0)</td>
<td>3 (14)</td>
<td>2 (13)</td>
<td>1 (5)</td>
<td>3 (17)</td>
<td>3 (30)</td>
<td></td>
</tr>
<tr>
<td>Black: n (%)</td>
<td>0 (0)</td>
<td>1 (5)</td>
<td>1 (6)</td>
<td>2 (10)</td>
<td>2 (10)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>CD4 %: Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IQR)</td>
<td>48.2 (42.1-52.1)</td>
<td>45.1 (35.4-56.1)</td>
<td>37.7 (29.2-42.5)</td>
<td>15.7 (13.5-20.7)</td>
<td>35.2 (13.5-20.7)</td>
<td>27.8 (17.4-32.5)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>cells/µl: Median</td>
<td>777 (561-950)</td>
<td>781 (501-1081)</td>
<td>619 (542-880)</td>
<td>283 (169-338)</td>
<td>646 (519-919)</td>
<td>434 (369-709)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>(IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4:CD8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>1.72 (1.51-2.75)</td>
<td>1.99 (1.14-3.19)</td>
<td>0.96 (0.64-1.33)</td>
<td>0.25 (0.19-0.39)</td>
<td>0.80 (0.57-1.22)</td>
<td>0.46 (0.36-0.74)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Years since HIV diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>NA</td>
<td>NA</td>
<td>12.7 (8.3-16.2)</td>
<td>5.1 (2.8-9.0)</td>
<td>9.6 (7.4-15.5)</td>
<td>4.9 (2.8-9.4)</td>
<td></td>
</tr>
<tr>
<td>Years on ART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>NA</td>
<td>NA</td>
<td>8.0 (3.2-11.3)</td>
<td>NA</td>
<td>9.6 (3.7-11.6)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Years since HCV diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>NA</td>
<td>11.0 (7.5-16.0)</td>
<td>NA</td>
<td>NA</td>
<td>8.0 (5.0-10.3)</td>
<td>4.5 (2.4-6.0)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>HCV Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: n (%)</td>
<td>NA</td>
<td>15 (71)</td>
<td>0 (0)</td>
<td>NA</td>
<td>NA</td>
<td>17 (94)</td>
<td></td>
</tr>
<tr>
<td>2: n (%)</td>
<td>NA</td>
<td>0 (0)</td>
<td>1 (5)</td>
<td>NA</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>3: n (%)</td>
<td>NA</td>
<td>5 (24)</td>
<td>NA</td>
<td>NA</td>
<td>1 (6)</td>
<td>1 (10)</td>
<td></td>
</tr>
<tr>
<td>4: n (%)</td>
<td>NA</td>
<td>8 (80)</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

P < 0.01, P < 0.001
Frequency of Th17 & Th22 cells

- No difference in Th17 or Th22 cells in HCV mono-infection
- Trend to reduced Th17 cells in HIV mono-infection
 - Confirmed with functional tests: IL-21+CD4 T cells
- Th22 cells depleted in HIV mono-infection
 - Confirmed with functional tests: IL-22+CD4 T cells
Frequency of Th17 & Th22 cells

- Th17 and Th22 cells depleted in HIV/HCV co-infection
 - Confirmed with functional tests: IL-21+CD4 T cells & IL-22+CD4 T cells
Frequency of Treg & Th1 cells

- No difference between groups in Treg cells
- Th1 cells increased in HCV
- Th1 cells unchanged in HIV
Frequency of Treg & Th1 cells

- Marked depletion of Th1 cells in HIV/HCV co-infection
 - Striking compared to HCV mono-infection
 - Deletion compared to HIV mono-infection
Shifts in CD4 T cell subsets

- HIV/HCV co-infection reduced Th1:Th22 & Th1:Th17 cell ratio
Correlations: immune activation & CD4 T cell subsets

HCV mono-infection

- Th17: $r = 0.4339$

- Th22: $r = 0.4776$

- Th1: $r = 0.4236$

HIV mono-infection

- $r = 0.5737$

- Th22: $r = 0.5316$

- Th1: $r = 0.1167$
Correlations:
immune activation & CD4 T cell subsets

HCV mono-infection
Th17: \(r = -0.4339 \)
Th22: \(r = -0.4776 \)
Th1: \(r = -0.4236 \)

HIV mono-infection
Th17: \(r = -0.5737 \)
Th22: \(r = -0.5316 \)
Th1: \(r = -0.1167 \)

HIV/HCV co-infection
Th17: \(r = 0.1515 \)
Th22: \(r = 0.1459 \)
Correlations:
microbial translocation & CD4 T cell subsets

HCV mono-infection

r 0.3829

HIV mono-infection

r -0.5029

Th17

Th22

r -0.3800

Th1

r -0.3717
Correlations: microbial translocation & CD4 T cell subsets

HCV mono-infection

Th17

HIV mono-infection

r -0.5029

HIV/HCV co-infection

r -0.0303

HCV mono-infection

Th22

r 0.3829

HIV mono-infection

r -0.3800

r -0.0973

HIV/HCV co-infection

r -0.5000

Th1

r -0.3717

r -0.1509
Correlations: immune activation & CD4 T cell shifts

HCV mono-infection

- Th1:Th17: $r = -0.1544$

HIV mono-infection

- Th1:Th17: $r = 0.5170$

HCV mono-infection

- Th1:Th22: $r = -0.0542$

HIV mono-infection

- Th1:Th22: $r = 0.4380$
Correlations: immune activation & CD4 T cell shifts

HCV mono-infection
- $\text{Th1:Th17} \quad r = -0.1544$

HIV mono-infection
- $\text{Th1:Th22} \quad r = -0.0542$
- $\text{Th1:Th17} \quad r = 0.5170$

HIV/HCV co-infection
- $\text{Th1:Th22} \quad r = 0.4380$
- $\text{Th1:Th17} \quad r = -0.5515$
- $\text{Th1:Th22} \quad r = -0.4788$
Correlations: microbial translocation & CD4 T cell shifts

HCV mono-infection

Th1:Th17 vs. LBP: $r = -0.6311$

HIV mono-infection

Th1:Th17 vs. LBP: $r = 0.4688$

Th1:Th22 vs. LBP: $r = -0.5604$

HIV/HCV co-infection

Th1:Th22 vs. LBP: $r = 0.4399$
Correlations:
microbial translocation & CD4 T cell shifts

HCV mono-infection

HIV mono-infection

HIV/HCV co-infection

Th1:Th17

Th1:Th22

Correlations: microbial translocation & CD4 T cell shifts
Correlations:
Liver stiffness

In HCV & HIV groups immune activation was positively associated with liver stiffness
In HCV & HIV groups immune activation was positively associated with liver stiffness.

Liver stiffness (Kpa)

- Th1
 - HIV/HCV co-infection: $r = -0.6239$
 - In HCV & HIV groups immune activation was positively associated with liver stiffness.

- Th1:Th17
 - HIV/HCV co-infection: $r = -0.6991$

- Th1:Th22
 - HIV/HCV co-infection: $r = -0.6869$
Conclusions

HCV mono-infection
- preferential expansion of Th1 cells
- Shifts towards Th1 cells associated with reduced levels of microbial translocation

HIV mono-infection
- preferential depletion of Th17 and Th22 cells
- Depleted Th17 cells associated with increased levels of immune activation and microbial translocation

HIV/HCV co-infection
- depletion of Th1, Th17 & Th22 cells
 - AND
- Shifts away from Th1 cells towards Th17 and Th22 cells
- Shifts away from Th1 cells associated with increased levels of microbial translocation, immune activation and liver stiffness.

In HIV mono-infection a preferential reduction in Th17 cells may lead to increased levels of microbial translocation & immune activation.

In HIV/HCV co-infection an additional lack of Th1 cell expansion with alterations in the balance of Th1 to Th17 cells may contribute toward development of liver fibrosis through secretion of pro-inflammatory cytokines.
Limitations

• Cross-sectional – causality cannot be determined

• Accuracy of markers used for microbial translocation

• Liver fibrosis assessment: use of transient elastography rather than biopsy

• Lack of paired gut or liver samples
Acknowledgements

Imperial College London

Peter Kelleher
Sally Ann Clark
Melanie Hart
Louise Greathead
Rebecca Metcalf
Adriano Boasso

Chelsea and Westminster Hospital NHS

Brian Gazzard
Mark Nelson
Mike Anderson

Grants

NEAT
SSAT
British HIV Association

Kobler Clinic

Chelsea and Westminster Hospital
369 Fulham Road
London SW10 9NH

Patients & Staff
British HIV Association
BHIVA

19th Annual Conference of the British HIV Association (BHIVA)

16–19 April 2013

Manchester Central Convention Complex