HIV Antiretroviral Drug Regimens and Lung Function Decline in Early HIV Infection

Ken Kunisaki, Jason Baker, Gary Collins, David MacDonald, Elzbieta Bakowska, John Connett, for the International Network for Strategic Initiatives in Global HIV Trials (INSIGHT) START Pulmonary Substudy Group
Conflicts of Interest

• Study funded by NIH

• GlaxoSmithKline consulting (2018)
Rationale

| 1990 rank | Global
Both sexes, All ages, Deaths per 100,000	2017 rank	
1 Ischemic heart disease	1 Ischemic heart disease	3 COPD
2 Stroke	2 Stroke	
3 Lower respiratory infect	4 Lower respiratory infect	5 Alzheimer's disease
4 Neonatal disorders	5 Alzheimer's disease	6 Lung cancer
5 COPD	3 COPD	
6 Diarrheal diseases		

Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis

Jean Joel Bigna, Angeladine Malaha Kenne, Serra Lem Asangbeh, Aurelie T Sibetcheu

Lancet Glob Health 2018; 6: e193–202
Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis

Jean Joel Bigna, Angeladine Malaha Kenne, Serra Lem Asangbeh, Aurelie T Sibetchevu

Lancet Glob Health 2018; 6: e193-202

- Inflammation
- Oxidative stress
- Respiratory microbiota
- Viral persistence
- Pneumonia / Respiratory Infections?
- ART
Rationale

Table 2. Studies examining effects of antiretroviral therapy on risk of chronic obstructive pulmonary disease among patients with HIV infection. All studies adjusted for smoking variables.

<table>
<thead>
<tr>
<th>Author</th>
<th>Setting</th>
<th>On ART (n)</th>
<th>No ART (n)</th>
<th>Design</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>George [11]</td>
<td>USA, single center</td>
<td>195</td>
<td>20</td>
<td>Cross-sectional study</td>
<td>ART use associated with lower FEV₁/FVC ratio in linear regression analysis (β coefficient = -3.2; p = 0.04).</td>
</tr>
<tr>
<td>Gingo [12]</td>
<td>USA, single center</td>
<td>134</td>
<td>33</td>
<td>Cross-sectional study</td>
<td>ART use with higher odds COPD (OR 6.22; 95% CI: 1.19–32.43).</td>
</tr>
<tr>
<td>Crothers [22*]</td>
<td>USA, national healthcare system database</td>
<td>∼21 700</td>
<td>∼11 700</td>
<td>Prospective, administrative data analysis</td>
<td>ART use with lower incident COPD without smoking adjustment (incidence rate ratio [IRR] 0.90; 95% CI: 0.82–0.99). Smoking adjustment resulted in wider CI (RR 0.93; 95% CI: 0.73–1.18).</td>
</tr>
<tr>
<td>Drummond [25*]</td>
<td>USA, single center</td>
<td>169</td>
<td>134</td>
<td>Cross-sectional study</td>
<td>ART use not associated with COPD (OR 0.60; 95% CI: 0.29–1.22). However, viral load at least 200 000 copies/ml associated with COPD (OR 3.41; 95% CI: 1.24–9.39).</td>
</tr>
<tr>
<td>Drummond [10***]</td>
<td>USA, single center</td>
<td>172</td>
<td>144</td>
<td>Prospective, observational cohort</td>
<td>ART use not associated with differences in FEV₁ rate of decline. However, viral load at least 75 000 copies/ml associated with faster rate of FEV₁ decline compared with viral load less than 75 000 copies/ml (69 ml/year faster decline; 95% CI: 15.3–123.0 ml/year; p = 0.012).</td>
</tr>
<tr>
<td>Maseddu [14]</td>
<td>Italy, single center</td>
<td>87</td>
<td>24</td>
<td>Cross-sectional study</td>
<td>ART not associated with COPD, but CI very wide (OR 0.59; 95% CI: 0.06–5.93).</td>
</tr>
</tbody>
</table>

HIV(+) patients with CD4+ counts >500 cells/mm³
\[n = 4,685 \]

Strategic Timing of AntiRetroviral Therapy (START) Trial

Main Trial
- **Immediate ART group**
 - Initiate ART immediately following randomization
 - \[n = 518 \]

Ancillary Study
- **Deferred ART group**
 - Defer ART until CD4+ count declines to < 350 cells/mm³ or AIDS develops
 - \[n = 508 \]

Baseline + Annual

- **Spirometry**

Main trial study procedures,
Primary Outcome: Lung Function Decline

FEV$_1$: Forced expiratory volume in 1 second

Normal: (-25 to -30 mL/yr)

COPD = (-50 to -60 mL/yr)
Previously Published Main RCT Results

<table>
<thead>
<tr>
<th></th>
<th>FEV₁ slope (95% CI), mL/year</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate ART (n=135)</td>
<td>-32.9 (-58.5 to -7.4)</td>
<td>--</td>
</tr>
<tr>
<td>Deferred ART (n=155)</td>
<td>-29.7 (-54.3 to -5.0)</td>
<td>--</td>
</tr>
<tr>
<td>Difference</td>
<td>-3.3 (-38.8 to 32.2)</td>
<td>0.86</td>
</tr>
<tr>
<td>Baseline non-smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate ART (n=383)</td>
<td>-27.8 (-44.2 to -11.4)</td>
<td>--</td>
</tr>
<tr>
<td>Deferred ART (n=353)</td>
<td>-22.2 (-39.6 to -4.9)</td>
<td>--</td>
</tr>
<tr>
<td>Difference</td>
<td>-5.6 (-29.4 to 18.3)</td>
<td>0.65</td>
</tr>
<tr>
<td>Pooled analysis adjusted for baseline smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate ART (n=518)</td>
<td>-29.1 (-42.9 to -15.4)</td>
<td>--</td>
</tr>
<tr>
<td>Deferred ART (n=508)</td>
<td>-24.5 (-38.6 to -10.3)</td>
<td>--</td>
</tr>
<tr>
<td>Difference</td>
<td>-4.7 (-24.4 to 15.1)</td>
<td>0.64</td>
</tr>
<tr>
<td>Pooled analysis adjusted for smoking status at each study visit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate ART (n=518)</td>
<td>-28.8 (-42.6 to -14.9)</td>
<td>--</td>
</tr>
<tr>
<td>Deferred ART (n=508)</td>
<td>-23.6 (-37.8 to -9.3)</td>
<td>--</td>
</tr>
<tr>
<td>Difference</td>
<td>-5.2 (-25.1 to 14.6)</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Data are from groups of patients randomly assigned to either immediate or deferred ART initiation. ART=antineprotoviral therapy.

Table 2: Primary outcome of FEV₁ slope comparisons

Current Analysis

• **Secondary analysis of relationship between ART regimen and FEV$_1$ slope**

• Analysable ART regimens: NNRTI, PI, INSTI
 - All on dual-NRTI (88% TDF/FTC; 7% ZDV/3TC; 4%ABC/3TC)
 - Includes both immediate and deferred ART strategies

• Through all of follow-up
 - Unblinding May 2015
 - Follow-up through Dec 2016
FEV\textsubscript{1} Slopes, mL/year (95% CI)

\begin{itemize}
 \item NNRTI (n=643) \hspace{0.5cm} \text{15.4 mL/year (}-6.8 \text{ to } +37.5 \text{ mL/year}) \hspace{0.5cm} p=0.17
 \item PI (n=128) \hspace{0.5cm} \text{39.8 mL/year (}-21.0 \text{ to } -58.6 \text{ mL/year}) \hspace{0.5cm} p=0.53
 \item INSTI (n=82) \hspace{0.5cm} \text{24.5 mL/year (}-12.7 \text{ to } -36.2 \text{ mL/year}) \hspace{0.5cm} p=0.27
\end{itemize}

FEV\textsubscript{1} Slope Differences, mL/year (95% CI and p-value)
NNRTI (n=643)

PI (n=128)

INSTI (n=82)

FEV$_1$ Slopes, mL/year
(95% CI)

FEV$_1$ Slope Differences, mL/year
(95% CI and p-value)

-24.5 (-12.7 to -36.2)

-28.7 (-22.7 to -34.8)

-4.3 mL/year
(-17.5 to +8.9 mL/year)
p=0.53

11.1 mL/year
(-8.6 to +30.8 mL/year)
p=0.27

-39.8 (-21.0 to -58.6)

-24.5 (-12.7 to -36.2)

-28.7 (-22.7 to -34.8)
FEV₁ SLOPES, mL/year (95% CI)

NNRTI (n=643)
-28.7 (-22.7 to -34.8)

PI (n=128)
-24.5 (-12.7 to -36.2)

INSTI (n=82)
-39.8 (-21.0 to -58.6)

FEV₁ SLOPE DIFFERENCES, mL/year (95% CI AND p-VALUE)

- **NNRTI** (n=643)
 - Slope: -28.7 mL/year
 - (95% CI: -22.7 to -34.8)
 - p-value: 0.53

- **PI** (n=128)
 - Slope: -24.5 mL/year
 - (95% CI: -12.7 to -36.2)
 - p-value: 0.17

- **INSTI** (n=82)
 - Slope: -39.8 mL/year
 - (95% CI: -21.0 to -58.6)
 - p-value: N/A

- **NNRTI** vs. **PI**
 - Difference: 15.4 mL/year
 - (95% CI: -6.8 to +37.5 mL/year)
 - p-value: 0.17

- **NNRTI** vs. **INSTI**
 - Difference: -4.3 mL/year
 - (95% CI: -17.5 to +8.9 mL/year)
 - p-value: 0.53

- **PI** vs. **INSTI**
 - Difference: 11.1 mL/year
 - (95% CI: -8.6 to +30.8 mL/year)
 - p-value: 0.27
INSTI (n=82)

-39.8 mL/year
(-21.0 to -58.6)

PI (n=128)

-24.5 mL/year
(-12.7 to -36.2)

NNRTI (n=643)

-28.7 mL/year
(-22.7 to -34.8)

FEV₁ Slopes, mL/year (95% CI)

FEV₁ Slope Differences, mL/year (95% CI and p-value)

15.4 mL/year
(-6.8 to +37.5 mL/year)
p=0.17

11.1 mL/year
(-8.6 to +30.8 mL/year)
p=0.27

-4.3 mL/year
(-17.5 to +8.9 mL/year)
p=0.53
Conclusions

• Lung function decline is similar for NNRTI and PI drugs
 • Both in the range of normal age-related FEV$_1$ decline.

• More data are needed to assess the potential effects of INSTIs on lung function decline.

Thank you to the 1,026 START Pulmonary Substudy participants