Dr Curtis Cooper

The Ottawa Hospital, Canada

Fifth Annual BHIVA Conference for the Management of HIV/Hepatitis Co-Infection in collaboration with BASL and BVHG

Dr Curtis Cooper

The Ottawa Hospital, Canada

COMPETING INTEREST OF FINANCIAL VALUE $\geq £ 1,000:$	
Speaker Name	Statement
Curtis Cooper	
	TBC
Date	22 September 2012

HIV-HCV Co-Infection: When to Treat and When to Wait

Curtis Cooper, MD, FRCPC
Associate Professor of Medicine
University of Ottawa
Division of Infectious Diseases

October 3, 2012

Disclosures

- Industry
- Investigator: Merck, Vertex, Roche, BI, Tibotec, GS, BMS
- Consultant /Advisor: Merck, Vertex, Roche, BI
- Speaker: Merck, Roche, BI, ViiV, BMS
- Government
- OHTN
- CIHR
- PCIRN
- Health Canada

RIBAVIC: ITT SVR Genotype 1

APRICOT: Genotype 1 PROTOCOL SVR

Hospital Clínic Barcelona

 Peginterferon $\mathbf{\alpha - 2 b}$ vs. Interferon $\mathbf{\alpha - 2 b}$- PEG ($1,5 \mu \mathrm{~kg} \mathrm{qw}) \quad$ INF (3 MIU tiw)

Can we hope for more?

Boceprevir Plus Peginterferon/Ribavirin for the Treatment of HCV/HIV Co-Infected Patients

M Sulkowski¹, S Pol², C Cooper ${ }^{3}$, H Fainboim ${ }^{4}$, J Slim ${ }^{5}$, A Rivero ${ }^{6}$, M Laguno ${ }^{7}$, S Thompson ${ }^{8}$, J Wahl ${ }^{8}$, W Greaves ${ }^{8}$

1John Hopkins University School of Medicine, Baltimore, MD; ${ }^{2}$ Hopital Cochin, Paris, France; ${ }^{3}$ The Ottawa Hospital, Ottawa, ON, Canada; ${ }^{4}$ F. J. Muñiz Hospital De Infecciosas, Buenos Aires, Argentina; ${ }^{5}$ Saint Michael's Medical Center, Newark, NJ; ${ }^{6}$ Hospital Universitario Reina Sofia, Córdoba, Spain,
${ }^{7}$ Hospital Clinic i Provincial Barcelona, Spain; ${ }^{8}$ Merck Sharp \& Dohme, Whitehouse Station, NJ.

Oral Abstract Q-175

19 ${ }^{\text {th }}$ Conference on Retroviruses and Opportunistic Infections (CROI)
Seattle, WA
March 6, 2012

Study Design

- Two-arm study, double-blinded for BOC, open-label for PEG2b/RBV
- 2:1 randomization (experimental: control)
- Boceprevir dose 800 mg TID
- 4-week lead-in with PEG2b/RBV for all patients
- PEG-2b $1.5 \mu \mathrm{~g} / \mathrm{kg}$ QW; RBV 600-1400 mg/day divided BID
- Control arm patients with HCV-RNA \geq LLOQ at TW 24 were offered open-label PEG2b/RBV+BOC via a crossover arm

Demographics and Baseline Characteristics

	$\begin{gathered} \text { PR } \\ (\mathrm{N}=34) \end{gathered}$	$\begin{gathered} B / P R \\ (N=64) \end{gathered}$
Age (years), mean (SD)	45 (9.8)	43 (8.3)
Male, n (\%)	22 (65)	46 (72)
Race, n (\%)		
White	28 (82)	52 (81)
Non-white	6 (18)	12 (19)
Body mass index, mean (SD)	26 (4)	25 (4)
Cirrhosis, n (\%)	1 (3)	4 (6)
HCV genotype subtype, n (\%)*		
1 a	22 (65)	42 (66)
1b	10 (29)	15 (23)
HCV RNA level >800,000 IU/mL, n (\%)	30 (88)	56 (88)
HIV RNA <50 copies/mL, n (\%)	33 (97)	62 (97)
CD4 count (cells/mm ${ }^{3}$), median (range)	586 (187-1258)	577 (230-1539)

Virologic Response Over Time ${ }^{\dagger}$

† Three patients undetectable at FW4 have not yet reached FW12 and were not included in SVR12 analysis.

Summary of Safety

	PR $(\mathrm{N}=34)$	B / PR $(\mathrm{N}=64)$
Any AE	$34(100)$	$63(98)$
Serious AEs	$7(21)$	$11(17)$
Death	0	0
Treatment-related treatment-emergent	$34(100)$	$61(95)$
AEs	$3(9)$	$13(20)$
Study discontinuation due to an AE	$8(24)$	$18(28)$
Any drug modification due to an AE		

All data shown as number (\%) of patients.

Most Common Adverse Events With a Difference of $\geq 10 \%$ Between Groups

	PR $(\mathbf{N}=34)$	$\mathbf{B / P R}$ $(\mathbf{N}=64)$
Anemia	26%	41%
Pyrexia	21%	36%
Asthenia	24%	34%
Decreased appetite	18%	34%
Diarrhea	18%	28%
Dysgeusia	15%	28%
Vomiting	15%	28%
Flu-like illness	38%	25%
Neutropenia	6%	19%

Interim Analysis Summary

- HCV-HIV co-infected HCV treatment naïve patients had high rates of HCV response on BOC
- SVR-12. 61% of patients on B/PR vs. 27% of patients on PR
- Preliminary safety data of B / PR in co-infected patients showed a profile consistent with that observed in mono-infected patients

Telaprevir in Combination with Peginterferon Alfa-2a/Ribavirin in HCV/HIV Co-infected Patients: SVR12 Interim Analysis

Douglas T. Dieterich ${ }^{1}$, Vincent Soriano², Kenneth E. Sherman³, Pierre-Marie Girard ${ }^{4}$, Jürgen K. Rockstroh ${ }^{5}$, Joshua Henshaw ${ }^{6}$, Raymond Rubin ${ }^{6}$,

Mohammad Bsharat ${ }^{6}$, Nathalie Adda ${ }^{6}$, Mark S. Sulkowski ${ }^{7}$

On behalf of the Study 110 Team

[^0]
Study 110 Design: Randomized, Double-blind, Placebo-controlled Trial

Part A: no ART

Part B: ART (EFV/TDF/FTC or ATV/r + TDF + FTC or 3TC)

(EFV)=efavirenz; (TDF)=tenofovir; (FTC)=emtricitabine; (ATV/r)=ritonavir-boosted atazanavir; (3TC)=lamivudine;
(T) TVR=telaprevir 750 mg q8h or 1125 mg q8h (with EFV); Pbo=Placebo; (P) Peg-IFN=pegylated interferon alfa-2a (40 kD) $180 \mu \mathrm{~g} / \mathrm{wk}$;
(R) RBV=ribavirin $800 \mathrm{mg} /$ day or weight-based ($1000 \mathrm{mg} /$ day if weight $<75 \mathrm{~kg}, 1200 \mathrm{mg} /$ day for if weight $\geq 75 \mathrm{~kg}$; France, Germany, $\mathrm{n}=5$ patients)
Roche COBAS® TaqMan® HCV test v2.0, LLOQ of 25 IU/mL, LOD of <10 IU/mL

Patient Demographics and Baseline Characteristics

	Part A No ART		Part B			
			EFV/TDF/FTC		ATV/r + TDF + FTC or 3TC	
	$\begin{aligned} & \text { T/PR } \\ & \mathrm{N}=7 \end{aligned}$	$\begin{gathered} \text { PR } \\ \mathrm{N}=6 \end{gathered}$	$\begin{aligned} & \mathrm{T} / \mathrm{PR} \\ & \mathrm{~N}=16 \end{aligned}$	$\begin{gathered} \text { PR } \\ \mathrm{N}=8 \end{gathered}$	$\begin{aligned} & \text { T/PR } \\ & \mathrm{N}=15 \end{aligned}$	$\begin{gathered} \text { PR } \\ \mathrm{N}=8 \end{gathered}$
Gender, n (\%): Male	6 (86)	4 (67)	16 (100)	7 (88)	13 (87)	7 (88)
Caucasiant, n(\%) Black/African American, n(\%)	$\begin{aligned} & 2(29) \\ & 4(57) \end{aligned}$	$\begin{aligned} & 3(50) \\ & 3(50) \end{aligned}$	$\begin{gathered} 12(75) \\ 3(19) \end{gathered}$	$\begin{aligned} & 5(62) \\ & 3(38) \end{aligned}$	$\begin{gathered} 13(87) \\ 2(13) \end{gathered}$	$\begin{aligned} & 7(88) \\ & 1 \text { (12) } \end{aligned}$
Ethnicityt: Hispanic, n (\%)	3 (43)	2 (33)	5 (31)	1 (12)	3 (21)	3 (38)
Age, median years (range)	39 (34-50)	48 (42-65)	48 (31-57)	47 (31-53)	52 (36-59)	39 (26-53)
BMI, median $\mathrm{kg} / \mathrm{m}^{2}$ (range)	29 (22-37)	31 (26-37)	24 (21-32)	23 (19-28)	24 (23-33)	25 (22-30)
HCV RNA $\geq 800,000 \mathrm{IU} / \mathrm{mL}^{* *}$, n (\%)	7 (100)	5 (83)	13 (81)	7 (88)	12 (80)	7 (88)
HCV Genotype Subtype*, $n(\%)$ 1a 1b Other	$\begin{aligned} & 3(43) \\ & 4(57) \\ & 0(0) \end{aligned}$	$\begin{aligned} & 3(50) \\ & 2(33) \\ & 1(17) \end{aligned}$	$\begin{gathered} 12(75) \\ 4(25) \\ 0(0) \end{gathered}$	$\begin{aligned} & 6(75) \\ & 1(12) \\ & 1 \text { (12) } \\ & \hline \end{aligned}$	$\begin{gathered} 12(80) \\ 3(20) \\ 0(0) \end{gathered}$	$\begin{aligned} & 5(62) \\ & 3(38) \\ & 0(0) \end{aligned}$
Bridging Fibrosis, $\mathrm{n}(\%)$ Cirrhosis, n (\%)	$\begin{aligned} & \hline 1(14) \\ & 0(0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0(0) \\ & 0(0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2(12) \\ & 2(12) \end{aligned}$	$\begin{gathered} \hline 1(12) \\ 0(0) \end{gathered}$	$\begin{aligned} & \hline 0(0) \\ & 0(0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1(12) \\ 0(0) \end{gathered}$
HIV RNA median copies/mL (range)	$\begin{array}{c\|} \hline 1495 \\ \hline(193-53,450) \\ \hline \end{array}$	$\begin{gathered} 267 \\ (25-21,950) \end{gathered}$	25 (25-25)	25 (25-25)	25 (25-25)	25 (25-25)
CD4+ median cells/mm ${ }^{3}$ (range)	$\begin{gathered} \hline 604 \\ \hline(496-759) \\ \hline \end{gathered}$	$\begin{gathered} 672 \\ \hline(518-1189) \end{gathered}$	$\begin{gathered} 533 \\ (299-984) \end{gathered}$	$\begin{gathered} 514 \\ (323-1034) \end{gathered}$	$\begin{gathered} 514 \\ (254-874) \end{gathered}$	$\begin{gathered} 535 \\ (302-772) \end{gathered}$

†Race and ethnicity were self-reported *5'NC InnoLipa line probe assay
**Roche COBAS® TaqMan® HCV test v2.0, LLOQ of $25 \mathrm{IU} / \mathrm{mL}$ and LLOD of $10-15 \mathrm{IU} / \mathrm{mL}$

SVR Rates 12 Weeks Post-Treatment (SVR12*)

HCV Treatment Outcome

	Total	
Virologic Outcome	T/PR	PR
n/N (\%)	SVR	$28 / 38(74)$
Patients without SVR	$10 / 38(26)$	$12 / 22(55)$
On-treatment virologic failure	$3 / 38(8)$	$8 / 22(36)$
Not suppressed at EOT	$5 / 37^{*}(14)$	$9 / 22(41)$
Patients with relapse	$1 / 32^{\S}(3)$	$2 / 13(15)$
Other	$6 / 38(16)$	$2 / 22(3)$

Relapse was defined as HCV RNA \geq LLOQ relative to the actual end-of-treatment (EOT) window. Number of patients with values <LLOQ at EOT visit window, or those whose next value observed after the actual EOT window is <LLOQ was used as denominator for relapse calculations. *N=37, 1 patient did not have EOT HCV RNA ${ }^{\text { }}$ T/PR patient from Part A

Events of Special Interest: Overall Treatment Phase

	T/PR $\mathrm{N}=38$ $\mathrm{n}(\%)$	PR $\mathrm{N}=22$ $\mathrm{n} / \mathrm{N}(\%)$
Severe rash	$\mathbf{0 (0)}$	$\mathbf{0 (0)}$
Mild and moderate rash	$13(34)$	$5(23)$
Anemia	$\mathbf{7 (1 8)}$	$\mathbf{4 (1 8)}$
Grade 3 hemoglobin shifts* (7.0-8.9 g/dL)	$\mathbf{1 1 (2 9)}$	$5(23)$
Use of erythropoietin stimulating agent	$\mathbf{3 (8)}$	$\mathbf{1 (5)}$
Blood transfusions		$\mathbf{1 (5)}$

-CD4 counts declined in both T/PR and PR groups; CD4\% remained unchanged

Conclusions

- Higher SVR12 rates were observed in chronic genotype 1 HCV/HIV co-infected patients treated with telaprevir combination treatment
- T/PR 74\%
- PR 45\%
- In patients treated with telaprevir combination treatment, overall safety and tolerability profile was comparable to that previously observed in chronic genotype 1 HCV mono-infected patients

Low Rates of Treatment Initiation and Completion of HCV Therapy in US VA System

- Among individuals not receiving HCV therapy HIV coinfection cited as the reason for 6.3% Kramer JR, et al. J Hepatol. 2012;56:320-325.

Issues with HCV Therapy Influencing Treatment Decisions in HIV

- Polypharmacy
- Side Effect Profile
- Interferon-based
- DDI

PK Issues and

Clinical Consequences

Interactions Between HCV and HIV PIs Summary of Healthy Volunteer Studies

Impact on HIV PI Cmin Impact on HCV AUC

- Dosing recommendations:
- Boceprevir: coadministration with ritonavir-boosted Pls is not recommended
- Telaprevir: do not administer with DRVr, FPVr or LPVr; ongoing evaluation with ATVr

Interactions Between HCV DAA \& EFV Summary of Healthy Volunteer Studies

Impact on HCV PK

- Dosing recommendations:
- Boceprevir: coadministration EFV is not recommended
- Telaprevir: use 1125 mg TID with EFV

Interactions Between HCV DAA \& NNRTIs Summary of Healthy Volunteer Studies

- Dosing recommendations:
- Efavirenz: avoid with BOC, use 1125 mg TID telaprevir
- Etravirine: ? with BOC, OK with telaprevir
- Rilpivirine: OK with telaprevir
[van Heeswijk et al. CROI 2011, \#119. Garg et al. 6th HCV PK Wksp 2011, \#PK_13. Victrelis Monograph 2011. Hammond et al. IWCPHT 2012 O-15. Kakuda et al. IWCPHT 2012 O_18]

Integrase Inhibitors- Raltegrevir

| | | | | paired sample | |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: |
| | RAL + BOC | RAL | GMR (90\% CI) | t-test | |
| $\mathrm{AUC}_{0-12 \mathrm{~h}}\left(\mathrm{mg}^{*} \mathrm{~h} / \mathrm{L}\right)$ | $4.27(3.22-5.66)$ | $4.22(3.19-5.59)$ | 1.01 | $(0.85-1.20)$ | 0.664 |
| $\mathrm{C}_{\max }(\mathrm{mg} / \mathrm{L})$ | $1.06(0.76-1.49)$ | $0.98(0.73-1.31)$ | 1.09 | $(0.89-1.33)$ | 0.471 |

De Kanter. Poster \#772LB CROI 2012

Figure 2: Mean (SD) PK Profile of TVR

Figure 5: Mean (SD) PK Profiles of RAL-gluc

Van Heeswijk. ICAAC 2011. Poster \#1738

Clinical Relevance

- Boceprevir
- 7 patients had HIV breakthrough (>50 copies HIV RNA at 2 consecutive visits):
- 3/64 randomized to B/PR
- $4 / 34$ to PR
- Telaprevir
- There were no HIV RNA breakthroughs
- 3 T/PR patients experienced HCV RNA breakthrough:
- 1 receiving EFV/TDF/FTC and 1 receiving ATV/r + TDF/FTC at W4
- 1 receiving EFV/TDF/FTC at W12

Issues with HCV Therapy Influencing Treatment Decisions in HIV

- Expense
- Do the studies reflect your population?
- Complexity of delivery
- Lack of expertise
- Is this a true priority?

When not to Treat?

- HIV Status
- Psychosocial-Economic Conditions currently exist to support treatment?
- Substance Abuse

When to Treat?

- HIV in check
- Young and healthy without advanced liver disease
- Compensation but advanced fibrosis

When to Treat?

- Sexual Transmission
- Acute Infection
- Vogel M, Dominguez S, Bhagani S, Azwa A, Page E, Guiguet M, Valantin MA, Katlama C, Rockstroh JK, Nelson M. Treatment of acute HCV infection in HIVpositive patients: experience from a multicentre European cohort. Antivir Ther. 2010;15(2):267-79.

Present versus Future

Research Needs

- Treatment of HIV-HCV co-infection in more advanced disease
- RGT
- IFN-sparing regimens
- DDI
- HCV treatment post OLT

Concluding Statement

- The majority of issues are not unique to
- HIV-HCV co-infection.
- The same general approach to work-up, treatment and long-term follow-up is appropriate in this population as in HCV mono-infection.

Thank You

[^0]: ${ }^{1}$ Mount Sinai School of Medicine, New York, NY, United States, ${ }^{2}$ Hospital Carlos III, Madrid, Spain, ${ }^{3}$ University of Cincinnati College of Medicine, Cincinnati, OH, United States, ${ }^{4}$ Hôpital St Antoine, Paris, France, ${ }^{5}$ University of Bonn, Bonn, Germany, ${ }^{6}$ Vertex Pharmaceuticals Incorporated, Cambridge, MA, United States, and ${ }^{7}$ Johns Hopkins University School of Medicine, Baltimore, MD, United States.

