Timing of Detection of Treatment-Emergent Resistance During Rebound Viraemia

Mackie NE1, Beloukas A2, Mbisa T3, Bibby DF3, Kaye S4, Phillips A5, Dunn D5, Nelson M6, Geretti AM27

Affiliations

- 1. Imperial College Healthcare NHS Trust; 2. University of Liverpool; 3. Public Health England; 4. Imperial College; 5. University College London; 6. Chelsea and Westminster Foundation Trust;
 - 7. Roche Pharmaceutical Research & Early Development

Background (1)

- Confirmation of viral load (VL) rebound in a subsequent sample is recommended prior to resistance testing¹⁻³
- Uncertainties around the VL cut-off for defining virological failure and requesting a resistance test, and the logistics of recalling patients for repeat testing, may result in patients continuing therapy in the presence of detectable VL
- There are no clear estimates of the VL level at which resistance emerges during virological rebound of first line NNRTI-containing ART

Background (2)

- Population ('Sanger') sequencing is the conventional method used to detect drug resistance mutations (DRMs) in clinical practice
- Conventional sequencing (CS) fails to detect minority variants (<15-20% of the viral population)
- Next generation sequencing (NGS) provides a more sensitive and quantitative measure ("frequency") of DRMs in a patient's sample

Study population

- UK HIV Drug Resistance Database
- Started first-line [TDF or ABC] + [FTC or 3TC] + [EFV or NVP] (2003-2009)
- Achieved VL <50 cps/ml
 - by median 3.4 months (IQR 2.8-4.4)
- Had ≥2 VL measurements per year during follow-up
- Experienced VL rebound >50 cps/mL
 - after median 15.3 months (IQR 12.1-25.0)
- Underwent CS at confirmed rebound (CR_{CS}) with DRMs detected
- Sequential samples collected during viraemia prior to CR_{CS}
 - 2-3 samples per patients

Aim of study

12 patients with confirmed rebound on 1st line NNRTI-based ART and treatment-emergent DRMs by CS

Examine the emergence of DRMs in viraemia samples collected prior to CR_{cs}

Conventional sequencing (CS)

Next generation sequencing (NGS)*

Methods

- With EC approval, stored plasma samples from the 12 subjects were retrieved from two clinical centres and tested centrally (UoL) by both CS and NGS
- DRMs identified according to the Stanford database algorithm (v7.0) and the IAS-USA Mutation list (Nov 2015)

Samp	les retrieved from 12 subjects

HIV-1 RNA cp/mL	Viraemia samples, n	Baseline samples, n
100-1000	12	0
1000-10000	6	0
>10000	11	7
Total	29	7

Samples with viral load <1000 cps were subjected to ultrasensitive sample prep prior to sequencing

Viral load rebound during therapy

Results (1)

 No DRMs found in baseline (pre-treatment) samples by CS and NGS

Subj.	Sample	VL	Months	Clinic CS	Study NGS (frequency) and CS - DRMs in bold detected by both NGS and CS	
		(c/mL)	of ART		NRTI	NNRTI RAMs
1	Rebound 1	241	16.1	-	D67N (1.2%)	V90I (1.3%) K103N (69%) Y188C (93%) F227C (1.2%) M230L (19%)
	Rebound 2	934	20.3	-	None	K103N (99%) V179I (14%) Y188C (89%)
	Rebound 3	10368	37.5	K103N Y188C	None	V90I (1.3%) K103N (99%) V179I (95%) Y188C (93%)
-	NEDOUNG 1	347	40.7	-	12137 (470)	None
	Rebound 2	27470	51.6	G190A	None	G190A (14%)
3	Rebound 1	242	14.5	-	D67N (6%) K65R (95%)	K103N (4%) V106M (89%) V106I (4%) Y181C (99%) F227C (93%)
	Rebound 2	1500	15.7	K65R V106M Y181C	D67N (3%) K65R (99%)	V106M (98%) V106I (1.7%) Y181C (100%) F227C (100%)
4	Rebound 1	100	32.3	-	None	None
	Rebound 2	1985	34.5	None	None	Y188C (1.8%)
	Rebound 3	1145	35.6	K103N	None	L100I (1.8%) K101E (42%) K103N (41%) Y188C (1.7%)
5	Rebound 1	425	11.7	-	K65N (99%) M184V (1.2%)	L100I (99%) K103N (99%)
	Rebound 2	459	13.3	-	K65N (98%) Y115F (4%)	L100I (98%) K103N (99%)
	Rebound 3	996	13.8	L1001 K103N	K65N (99%) K70R (3%) Y115F (10%)	L100I (99%) K103N (100%)
6	Rebound 1	276	8.7	-	D67N (93%), M184I (90%)	V90I (2%) V106I (85%) Y188C (92%)
	Rebound 2	1081	9.3	D67N M184I Y188C	D67N (91%), M184I (77%) M184V (15%)	V90I (6%) V106I (84%) Y188C (91%)
7	Rebound 1	13526	21.5	-	None	K103N (1.6%)
	Rebound 2	36690	31.4	-	None	None
	Rebound 3	85549	39.1	K103N Y181C	N/A	N/A
8	Rebound 1	5165	51.6	-	None	K103N (95%)
	Rebound 2	10807	52.6	K103N	None	K103N (100%)
9	Rebound 1	146	22.6	-	A62V (99%) M184V (99%)	L100I (99%) V179I (7%)
	Rebound 2	780	28.0	-	A62V (99%) M184V (99%)	L100I (99%) V179I (4%)
	Rebound 3	1381	28.5	-	A62V (98%) M184V (97%)	L100I (98%) V179I (8%)
	Rebound 4	N/A	28.7	L100I M184V	N/A	N/A
10	Rebound 1	20216	15.3	M184V	M184I (8%) M184V (92%)	M230L (1.6%)
	Rebound 2	17200	16.0	M184V	K65R (1.3%) M184I (3%) M184V (97%)	None
11	Rebound 1	19609	7.9	-	None	K101E (100%)
	Rebound 2	25721	9.1	K101E K103N	None	K101E (26%) K103N (24%)
12	Rebound 1	738	12.2	-	-	-
	Rebound 2	578	12.7	-	M184I (1.2%)	K103N (82%), M230I (1.4%), M230L (1.9%)
	Rebound 3	41103	13.3	K103N	None	K103N (99%)
	Rebound 4	20758	14.0	K103N	None	K103N (99%)

Subj.	Sample	VL	Months	Clinic CS	(frequency) a	nd CS - DRMs in bold detected by both NGS and CS
		(c/mL)	of ART		N.	NNRTL RAMs
1	Rebound 1	241	16.1	-	D67N (1.2%)	V90I (1.3%) (103N (69%) (188C (93%)) 227C (1.2%) (1230L (19%
	Rebound 2	934	20.3	-	None	K1 03N (9 9%) V1 79I (1 4%) Y188C (89%)
	Rebound 3	10368	37.5	K103N Y188C	None	V90I (1.3%) K103N (99%) V179I (95%) Y188C (93%)

Clinic based sequence

Results: DRMs in first tested sample (1)

- 7/12 (58%) subjects had ≥1 NRTI DRM
 - M184I/V in 5/12 (42%)
 - 5/12 subjects had NRTI
 DRMs by both CS and NGS
 (frequency ≥90%)
 - 2/12 subjects had NRTI DRMs by NGS alone (frequency 1.2-7.9%)

Subject ID	Mutational profile
1	D67N
3	D67N + K65R
5	K65N + M184V
6	D67N + M184I
9	A62V + M184V
10	M184I + M184V
12	M184I

Results: DRMs in first tested sample (2)

- 10/12 (83%) subjects had ≥1 NNRTI DRM
 - K103N in 6/12 (50%)
 - 8/12 subjects had NNRTI DRMs by both CS and NGS
 - 2/12 subjects had NNRTI DRMs by NGS alone (frequency 1.6%)
 - Combining both methods,
 6/12 subjects (50%) had ≥2
 NNRTI DRMs in the first sample

Subject	Mutational profile
1	V901, K103N, Y188C, F227C, M230L
3	K103N, V106M, V106I, Y181C, F227C
5	L100I, K103N
6	V90I, V106I, Y188C
7	K103N
8	K103N
9	L100I, V179I
10	M230L
11	K101E
12	K103N, M230I, M230L

Results: DRMs in second tested sample

- Interval between 1st and 2nd study sample: median 1.4 months (IQR 0.9-3.2)
- 5/12 (42%) subjects had ≥1 NRTI DRM on the second sample
- Prevalence of NNRTI DRMs remained 10/12 (83%) in the second sample

Subject	First sample	Second sample
1	D67N	-
3	D67N + K65R	D67N + K65R
5	K65N + M184V	K65N + Y115F
6	D67N + M184I	D67N + M184I + M184V
9	A62V + M184V	A62V + M184V
10	M184I + M184V	K65R + M184I + M184V
12	M184I	-

Results: DRMs in third tested sample

- 5 subjects had a 3rd study sample available
 - Confirmed or extended the mutational profile detected in the second sample
 - 5/5 subjects had ≥1 NNRTI DRM (frequency ≥41%)
 - 2 subjects also had NRTI DRMs

Viral load rebound during therapy

Conclusions (1)

- During first-line NNRTI-based ART, treatmentemergent DRMs were already detected in the first VL rebound sample (confirmed on testing of the subsequent rebound sample)
 - Median VL 312 copies/ml

Conclusions (2)

 Excellent agreement between the profiles detected by NGS and those found to emerge simultaneously or subsequently by CS

 Transient detection of DRM at very low frequency (<2%) can occur with NGS and requires careful interpretation

Conclusions (3)

 Early confirmation of VL rebound and sequencing may be of benefit in individuals on NNRTIcontaining regimens, including those with lowlevel rebound viraemia

Acknowledgements

- The RENT study team
- BHIVA Research Awards Committee
- Patients of SMH and C+W

Thank you

• Questions?