Including CHIVA Parallel Sessions

Professor Jeffery Lennox

Emory University School of Medicine Atlanta, Georgia, USA

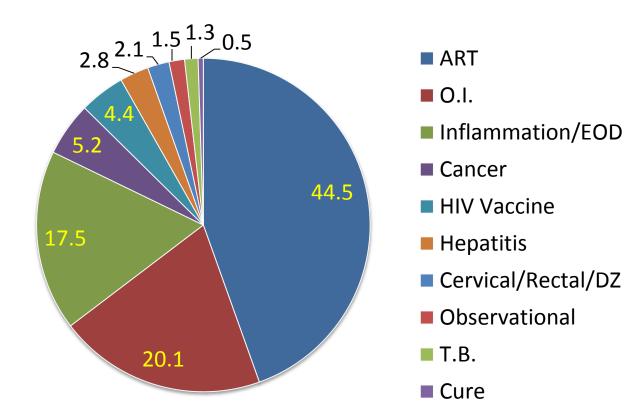
9-10 October 2014, Queen Elizabeth II Conference Centre, London

Professor Jeffery Lennox Emory University School of Medicine Atlanta, Georgia, USA

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:									
Speaker Name	Speaker Name Statement								
Professor Jeffery Lennox	Dr. Lennox acts in a Consultancy capacity for Merck Inc, BMS and Gilead. He has also received a grant for research from Gilead and ViiV.								
Date	October 2014								

9-10 October 2014, Queen Elizabeth II Conference Centre, London

The AIDS Clinical Trials Group (ACTG) and the impact on the treatment of HIV: past, present (A5257) and for the future


Jeffrey Lennox M.D. Professor of Medicine Co-PI Emory-CDC HIV Clinical Trials Unit Emory University School of Medicine Atlanta, Georgia USA

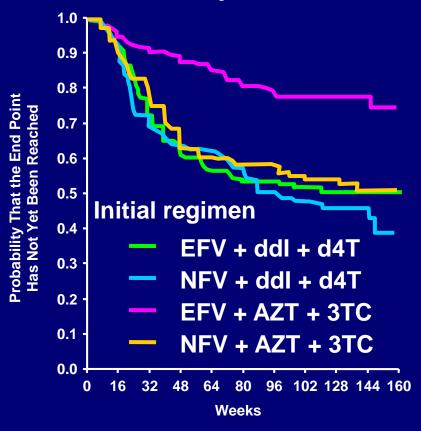
ACTG-Brief History

- Founded 1986 through funding from US NIH
- Initially did both adult and pediatric trials, but pediatrics segregated since 1995
- International Sites were added in 2002
- ACTG re-funded in 2013 Chair Daniel Kuritzkes, Vice Chairs Judy Currier and lan Sanne

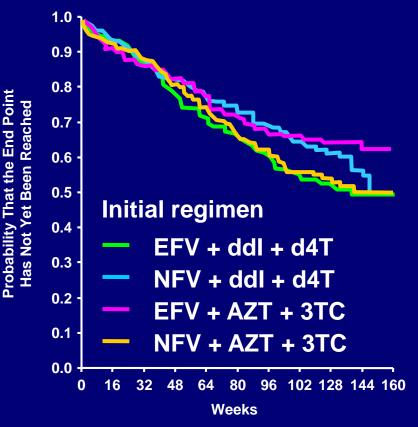
Sites in the U.S., Puerto Rico, South Africa, Botswana, Kenya, Malawi, Uganda, Zimbawbe, India, Thailand, Brazil, Peru, Haiti

Categorization of 388 ACTG Studies A0002 – A5257*

*Main studies only, enrolled patients


Highlights of Notable ACTG Antiretroviral Studies

1987 - 2012

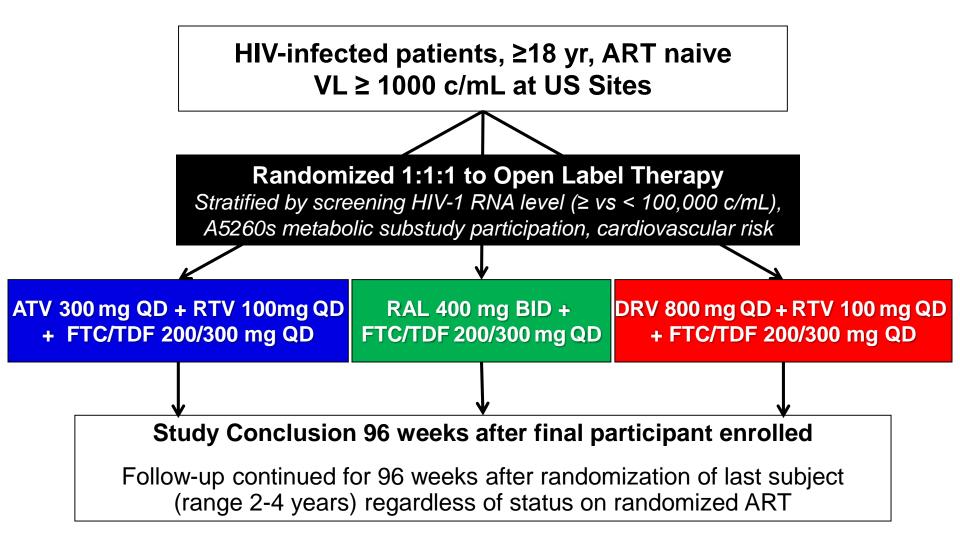

<u>Study</u>	Population	Brief Design	Main Conclusion
002	Naïve after 1 st PCP	ZDV vs low dose ZDV	ZDV 600mg/d = 1500mg/d
019	Asymptomatic HIV	ZDV vs Placebo	ZDV superior for CD4 cell
076	Women & Infants	ZDV vs Placebo	ZDV prevented transmission
175	CD4 200-500, naïve & experience	ZDV vs ddI vs ZDV+ddc vs ZDV+ ddI	ZDV+ddI, ZDV+ddc superior to ZDV (viral load reductions also superior)
229	CD4 50-200, experienced	ZDV+ddc vs ZDV +SQV vs ZDV+ ddc +SQV	ZDV+ddc+SQV superior
244	ZDV therapy, CD4 300-600	ZDV+ddI vs ZDV+ddI+NVP	ZDV resistance mutation predicted poor response
364	NRTI experienced	2NRTI+EFV or NFV or EFV+NFV	≥ 2 active drugs superior to < 2 drugs
384	Treatment naïve	ZDV/3TC vs D4T/ddI; NNRTI vs PI vs NNRTI+PI	ZDV/3TC+EFV superior; DTT/ddI toxic, 4 drugs not superior to 3 drugs

ACTG 384: Time to First and Second Regimen Failure by Initial Three-Drug Regimen

First Regimen Failure Secondary End Point

Second Regimen Failure Primary End Point

Highlights of Notable ACTG Antiretroviral Studies 1987 - 2012


<u>Study</u>	Population	Brief Design	Main Conclusion
5095	Naïve	ZDV/3TC/ABV vs ZDV/3TC +EFV vs ZDV/3TC/ABV+EFV	ZDV/3TC/ABV inferior; 2NRTI = 3NRTI when both with EFV
5142	Naïve	LPVr+EFV vs 2NRTI+LPVr or EFV	EFV superior to LPVr; more NNRTI resistance in NRTI sparing arm
5164	ART for acute O.I.	Early vs delayed ART for patients with an O.I.	Early ART reduces AIDS progression
5175	Naïve, RLS	ZDV/3TC+EFV vs TDF/FTC+ EFV vs ddI+FTC+ATV	ddI+FTC+ATV inferior; ZDV/3TC toxic compared to TDF/FTC
5202	Naïve	QD arms of TDF/FTC vs ABC/3TC, plus EFV vs ATV/r	TDF/FTC superior to ABV/3TC HIV RNA > 100k; ABC/3TC+EFV less tolerable
5221	Naïve with T.B.	Immediate vs deferred ART	Immediate ART superior if CD4 < 50
5241	Experienced, salvage	3 active drugs ± NRTI	NRTI provided no additional benefit

Efficacy and Tolerability of Atazanavir, Raltegravir, or Darunavir with FTC/TDF: ACTG A5257

(**ARDENT** Study- **A**tazanavir, **R**altegravir or **D**arunavir with **E**mtricitabine/tenofovir DF for **N**aïve **T**reatment)

Study chairs: Jeffrey Lennox and Judy Currier Study Vice Chairs Raphael Landovitz and Igho Ofotokun for the A5257 Study Team

A5257 Study Design*

*With the exception of RTV, all ART drugs were provided by the study

Study Design

Hypothesis

 FTC/TDF with ATV/r, RAL, or DRV/r will be equivalent in terms of virologic efficacy and tolerability over 96 weeks

Primary Endpoints*

- Time to HIV-1 RNA <u>>1000 c/mL</u> wk 16 to before wk
 24, or <u>>200 c/mL</u> at or after wk 24 (VF)
- Time to discontinuation of randomized component for toxicity (TF)

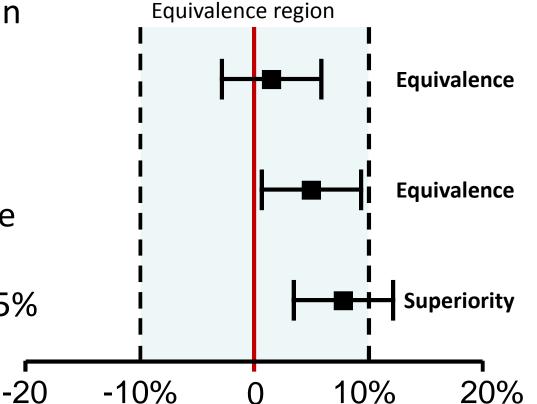
Pre-planned Composite Endpoint

 The earlier occurrence of either VF or TF in a given participant

* Time measured from date of study entry/randomization

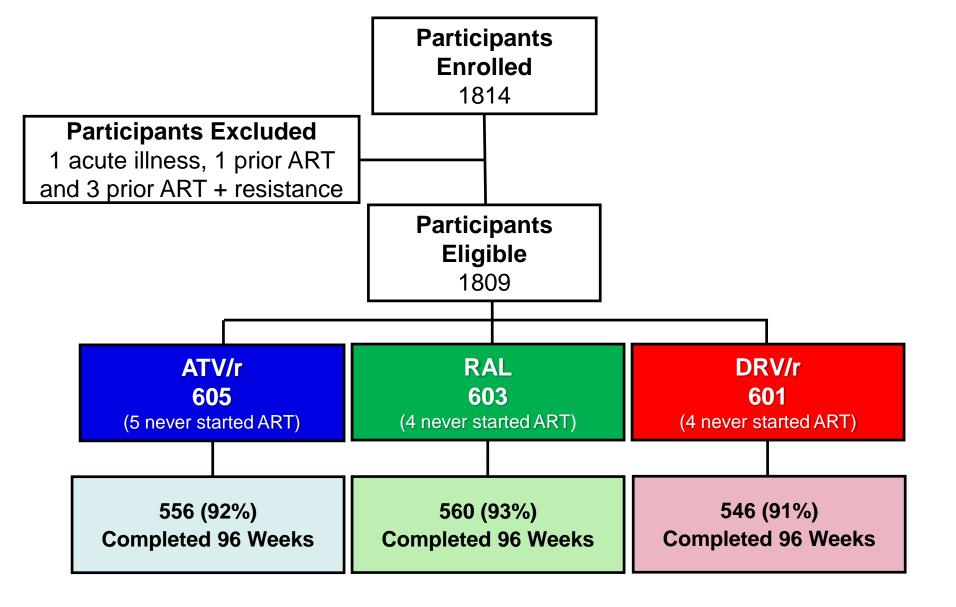
Key Inclusion Criteria

- No NRTI or PI mutations
- ART-naïve (defined as <10 days of ART at any time prior to entry)


Prior ART during pregnancy that resulted in virologic suppression and was not complicated either by detectable HIV-1 RNA following suppression or the development of resistance was allowed

- CrCl <u>></u>50mL/min
- Ability to obtain RTV by prescription

Analysis Considerations


- Equivalence= 97.5% CI on the pairwise difference in 96-week cumulative incidence falls entirely within -10% and +10%.
- Superiority= equivalence not demonstrated, superiority shown if 97.5% CI excludes zero.

Difference in 96-week cumulative incidence

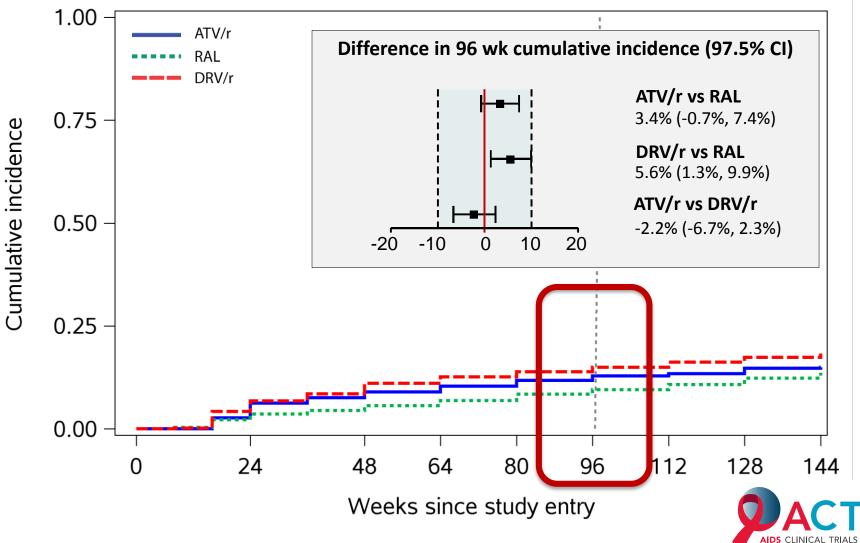
* 97.5% CI controls type I error at 5% for 3 pairwise equivalence comparisons.

Baseline Characteristics

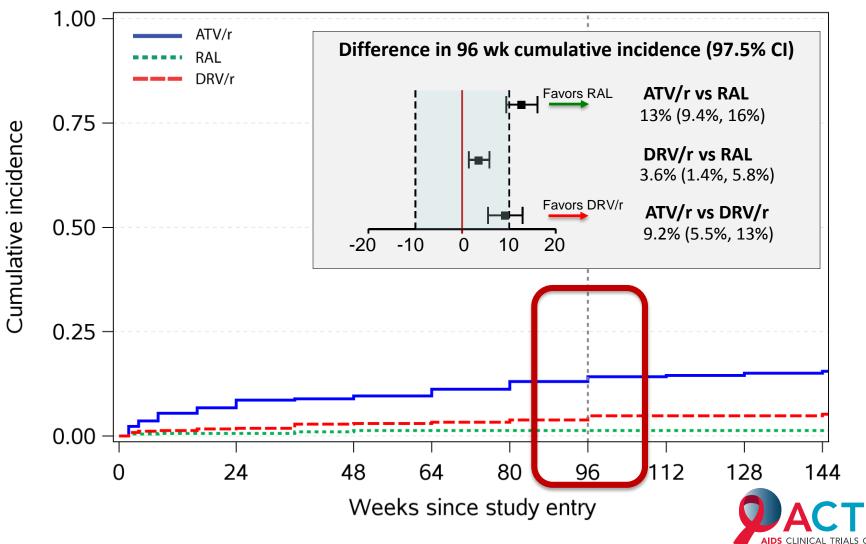
			Tr	eatment gro	up
		Total	ATV/r	RAL	DRV/r
Characteristic		(N=1809)	(N=605)	(N=603)	(N=601)
Sex	Female	435 (24%)	144 (24%)	148 (25%)	143 (24%)
Age (years)	Mean	37	38	37	38
Race/Ethnicity	White Non-His.	615 (34%)	212 (35%)	212 (35%)	191 (32%)
	Black Non-His.	757 (42%)	252 (42%)	254 (42%)	251 (42%)
	Hispanic	390 (22%)	125 (21%)	117 (19%)	148 (25%)
HIV-1 RNA (log ₁₀ c/ml)	Median (Q1-Q3)	4.6 (4.1-5.1)	4.6 (4.1-5.2)	4.7 (4.1-5.1)	4.6 (4.1-5.1)
(copies/ml)	<100,000	70%	68%	68%	72%
	100,000-500,000	23%	25%	24%	22%
	>500,000	7%	7%	8%	6%
CD4+ cells (/mm³)	Median (Q1-Q3)	308 (170-425)	309 (176-422)	304 (158-427)	310 (171-424)
	%<200	30%	29%	31%	29%

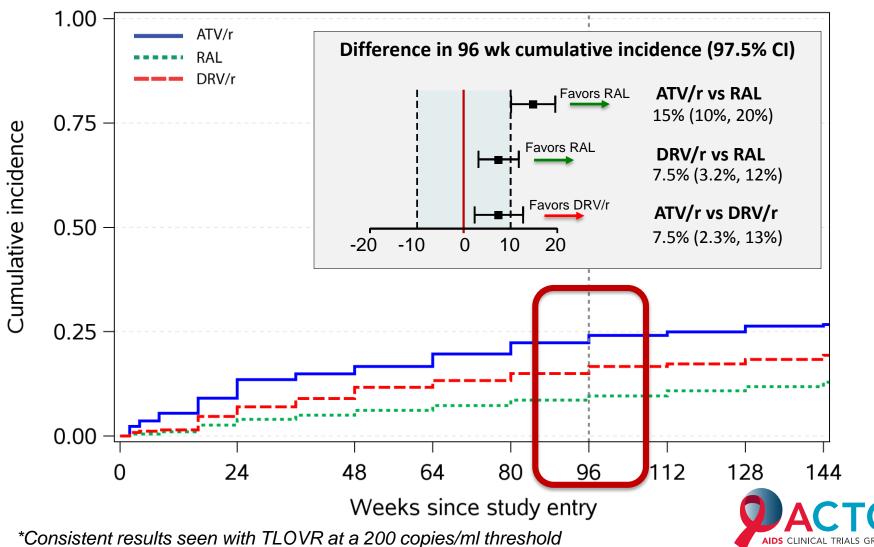
Baseline Characteristics

			Tr	eatment grou	up
Characteristic		Total	ATV/r	RAL	DRV/r
		(N=1809)	(N=605)	(N=603)	(N=601)
IV Drug History	Never	1,673 (92%)	558 (92%)	563 (93%)	552 (92%)
	Currently	4 (0%)	1 (0%)	0 (0%)	3 (0%)
	Previously	132 (7%)	46 (8%)	40 (7%)	46 (8%)
Calculated CrCL	Mean (s.d.)	125 (39)	126 (40)	127 (38)	123 (39)
(mL/min)	Min-Max	50-372	52-372	50-301	51-327
	Median (Q1-Q3)	120 (99-145)	121 (99-146)	122 (101-148)	118 (98-141)
Hepatitis C	Infected	141 (8%)	47 (8%)	49 (8%)	45 (7%)
Hepatitis B	SAg +	49 (3%)	15 (2%)	16 (3%)	18 (3%)



Participant and Subject Assessment of whether EFV was appropriate


			Tre	eatment gro	oup
Characteristic		Total (N=1809)	ATV/r (N=605)	RAL (N=603)	DRV/r (N=601)
EFV appropriate for participants?	No	440 (24%)	153 (25%)	153 (25%)	134 (22%)
Why EFV not	Women fertility	91	28	26	37
appropriate	Psychiatric illness	188	64	69	55
	Methadone withdrawal	5	1	2	2
	NNRTI resistance	112	43	45	24
	NNRTI intolerance	7	4	1	2
	Other	37	13	10	14


Cumulative Incidence of Virologic Failure

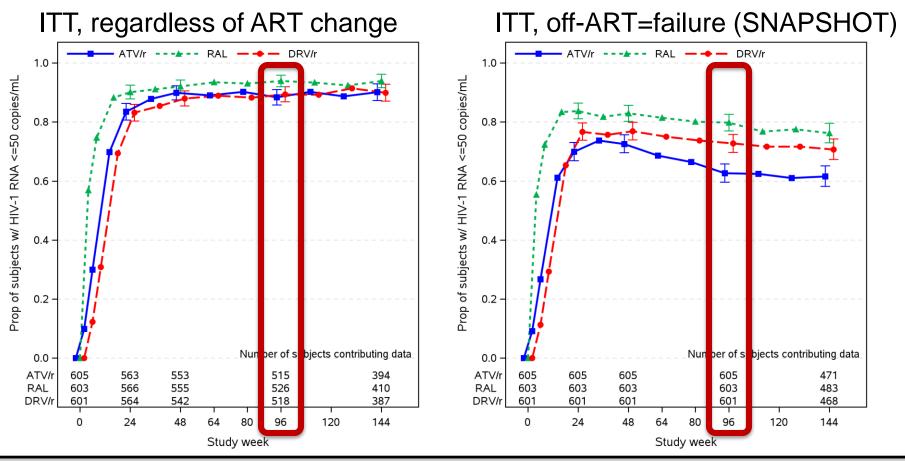
Cumulative Incidence of Tolerability Failure

Cumulative Incidence of Virologic or Tolerability Failure

Tolerability Failure Toxicity Associated Discontinuation of randomized ART

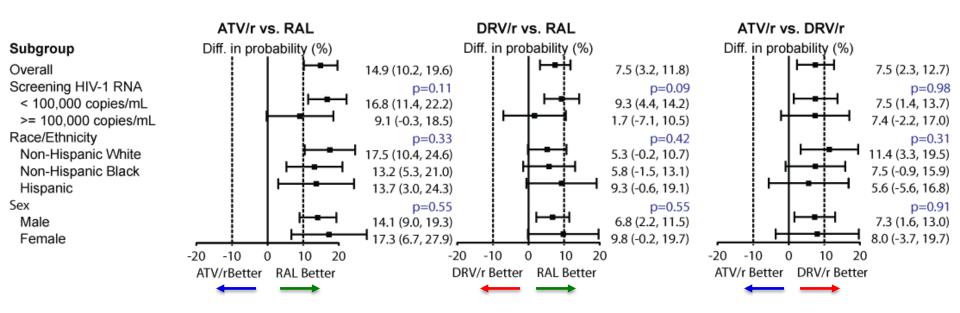
	ATV/r (N=605)	RAL (N=603)	DRV/r (N=601)
Any toxicity discontinuation	95 (16%)	8 (1%)	32 (5%)
Gastrointestinal toxicity	25	2	14
Jaundice/Hyperbilirubinemia	47	0	0
Other hepatic toxicity	4	1	5
Skin toxicity	7	2	5
Metabolic toxicity	6	0	2
Renal toxicity (all nephrolithiasis)	4	0	0
Abnormal chem/hem (excl. LFTs)	0	0	2
Other toxicity	2	3	4

*Participants allowed to switch therapy for intolerable toxicity



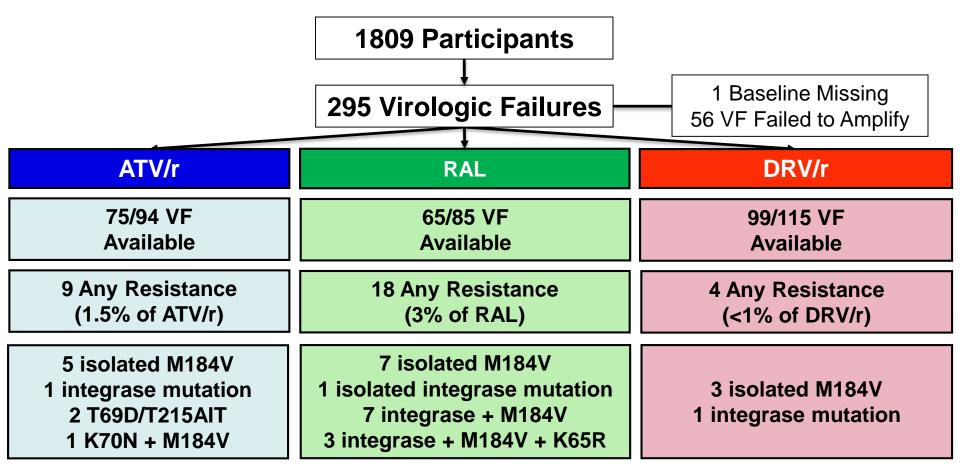
A Closer Look at ATV/r Hyperbilirubinemia

Maximum Blood	Site-repo	orted Cli Disconti		ason for	Finished on
Bilirubin	Hyper- bilirubin N=47	GI toxicity N=25	Other toxicity N=23	Non- toxicity N=98	ATV/r N=407
Grade 1 (1.1 - 1.5 x ULN)	2%	4%	4%	1%	3%
Grade 2 (1.6 - 2.5 x ULN)	2%	0%	0%	4%	7%
Grade 3 (2.6 - 5.0 x ULN)	43%	24%	22%	28%	40%
Grade 4 (> 5.0 x ULN)	43%	8%	4%	4%	5%



Proportion VL ≤50 copies/mL

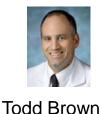
	24	48	96	144		24	48	96	144
ATV/r	83%	90%	88%	90%	ATV/r	70%	73%	63%	62%
RAL	90%	92%	94%	94%	RAL	84%	83%	80%	76%
DRV/r	83%	88%	89%	90%	DRV/r	77%	77%	73%	71%


Subgroup Analyses Virologic or Tolerability Failure

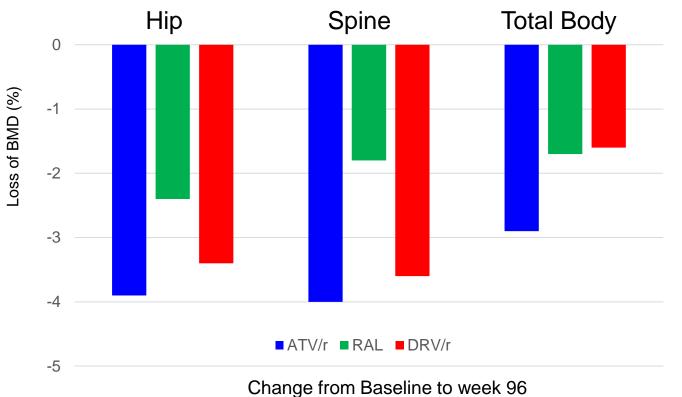
"No differential treatment effects by viral load, race/ethnicity or sex were apparent (P>0.09)"

Resistance to Study Agents

ACTG AIDS CLINICAL TRIALS GROUP

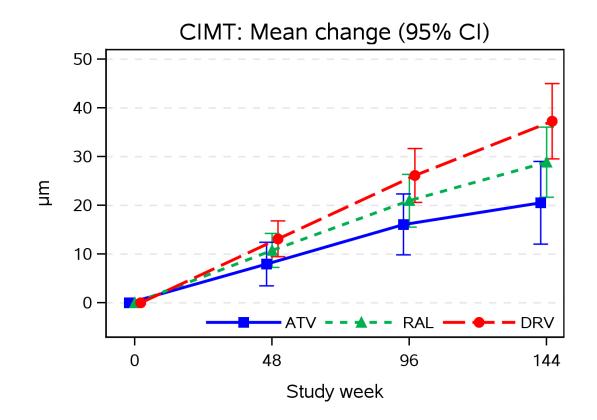

*Stanford University Genotypic Resistance Interpretation Algorithm V 6.3.1

Lipid Changes



Bone Density Changes-A5260 Substudy

328 subjects had BMD measured by DEXA



Changes in Carotid Intima-Media Thickness- A5260s

James Stein

326 subjects without diabetes or heart disease had CIMT measured by b mode ultrasonography

J Am Coll Cardiol. 2014;63(12_S):. doi:10.1016/S0735-1097(14)61322-X

<u>Research Agenda of the ACTG</u> 2012 and Beyond

- HIV Reservoirs and Viral Eradication
- Inflammation and End Organ Disease
 - Malignancy
 - Neurologic Conditions
- T.B.
- Hepatitis
- HIV Treatment, Pathogenesis and Complications among Women

HIV Reservoirs and Viral Eradication

- Interventions to characterize reservoirs, and methods to detect meaningful changes in reservoirs
- Impact of treatment of acute HIV on reservoir size, and potential for eradication
- Interventions to reduce or eliminate reservoirs

End Organ Disease and Inflammation

- Role of inflammation in viral pathogenesis and persistence
- Interactions of the mucosal immune system, the microbiome and HIV
- Cardiovascular, bone, neurologic and metabolic consequences of HIV, HIV treatment and inflammation
- Modulation of inflammation as a treatment strategy

<u>Tuberculosis</u>

- Methods to improve detection and treatment of latent and active T.B.
- Innovative treatments for MDR & XDR T.B.
- Adjunctive immune modulation for T.B. Treatment
- Shortening the duration of T.B. treatment


<u>Hepatitis</u>

- Treatment of HIV/HCV infection
- Hepatic inflammation, fibrosis and steatosis
- Selected ART and HCV treatment P.K. studies
- New therapeutic strategies for HIV/HBV coinfection

ACTG- Past vs Future Scientific Agenda

Studies Prior to 2012

Studies Since 2012

Conclusion

- The ACTG has played a major role in defining the current paradigm for treating HIV and its associated opportunistic infections, malignancies and end organ diseases.
- ACTG research will contribute to elimination or reduction of the HIV reservoir, and improved treatments for viral hepatitis and TB.
- The ACTG has an extensive bank of human samples and linked data that can be a resource for investigators.