Fifth Annual BHIVA Conference for the Management of HIV/Hepatitis Co-Infection *in collaboration with BASL and BVHG*

Professor Stanislas Pol

University of Paris, France

Wednesday 3 October 2012, One Great George Street Conference Centre, London

Fifth Annual BHIVA Conference for the Management of HIV/Hepatitis Co-Infection *in collaboration with BASL and BVHG*

Professor Stanislas Pol University of Paris

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:							
Speaker Name	Statement						
Stanislas Pol	Speaker : GSK ; BMS ; Boehringer Ingelheim ; Janssen ; Gilead ; Roche ; MSD Grants : BMS ; Gilead ; Roche ; MSD Member of Advisory Board : GSK ; BMS ; Boehringer Ingelheim ; Janssen ; Gilead ; Roche ; MSD ; Abbott ; Novartis ; Sanofi						
Date	22 September 2012						

Wednesday 3 October 2012, One Great George Street Conference Centre, London

The impact of resistance in the management of HCV with DAAs

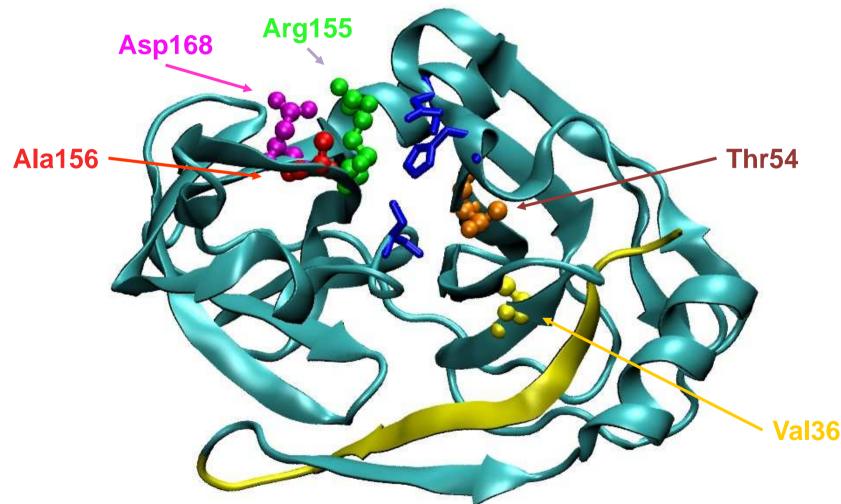
BHIVA London, 3 October 2012

StanislasPol, MD, PhD Liver Unit/Inserm U-1016 Hôpital Cochin, Paris, France

stanislas.pol@cch.aphp.fr

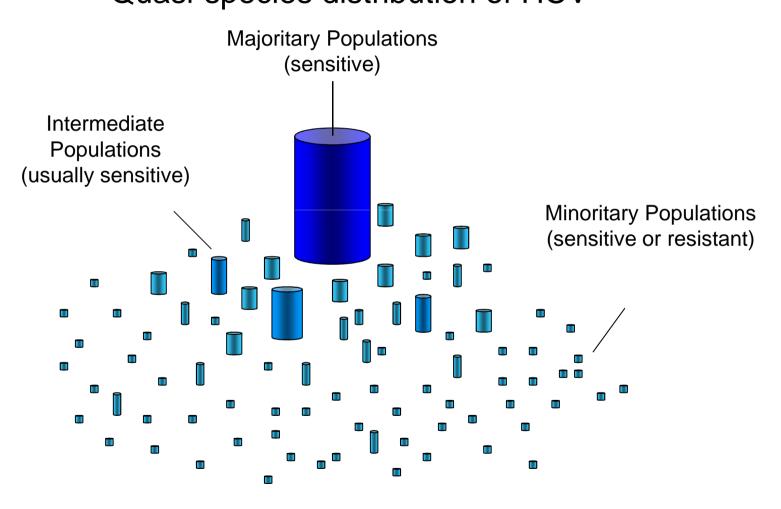
Resistance associated variants (RAVs) to DAAs pre-exist

Antiviral potency and genetic barrier to resistance are both important


- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Resistance associated variants (RAVs) to DAAspre-exist

Antiviral potency and genetic barrier to resistance are both important


- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Resistance associated variants (RAVs) to DAAs pre-exist

Amino acid substitutions result in resistance

Resistance associated variants (RAVs) to DAAs pre-exist Quasi-species distribution of HCV

Pawlotsky JM, Ther Adv Gastroenterol 2009;2: 205-219

Resistance associated variants (RAVs) to DAAs pre-exist: sensitivity of assays

Pt	IL28B geno- type*	Sub- type	Peg- IFN	RBV	TVR	Virologic Response	V36 A/M	T54 A/S	V55 A	Q80 R/K	R155 K/T/Q	A156 S/T/V	D168 A/V/T/H	l170 A/T
KHB	СТ	1a				NR	_	90.0%	_	_	0.1%	0.4%	0.1%	0.5%
SF	СТ	1a				NR	_	-	-	_	0.1%	1.1%	-	0.2%
LP	СТ	1b				RR	_	-	-	_	0.5%	0.5%	-	0.2%
DT	TT	1b				RR	_	29.4%	-	_	_	1.3%	-	0.1%
SM	СТ	1a				RR	_	-	-	_	0.1%	2.9%	0.1%	_
SG	СТ	1b				RR	4.2%	_	-	_	0.1%	0.1%	0.1%	0.1%
PB	СТ	1a				SVR	_	11.1%	_	0.7%	_	0.3%	_	0.3%
IM	СТ	1a				SVR	_	-	-	_	0.1%	0.5%	0.1%	_
NT	СС	1a				SVR	_	_	-	_	0.6%	1.8%	_	_
HM	СС	1a				SVR	_	_	-	_	0.6%	_	_	0.1%
AZ	ТТ	1a				RR	_	_	100.0%	0.1%	6.0%	3.2%	0.1%	0.3%
VS	СТ	1b				SVR	_	_	-	_	_	0.3%	_	0.1%
ES	СТ	1b				SVR	_	_	-	_	0.2%	0.2%	_	0.8%
SC	TT	1b				NR	-	_	_	_	0.1%	0.2%	_	0.1%
NJ	СТ	1b				SVR	_	_	-	_	0.4%	0.2%	0.1%	0.1%
AP	СТ	1a				SVR	-	_	1.3%	0.5%	7.8%	0.2%	0.1%	0.1%
ML	СТ	1a				SVR	-	47.4%	_	-	0.1%	0.4%	0.1%	0.1%
JK	СТ	1b				SVR	_	20.0%	_	_	0.1%	0.4%	0.1%	0.1%

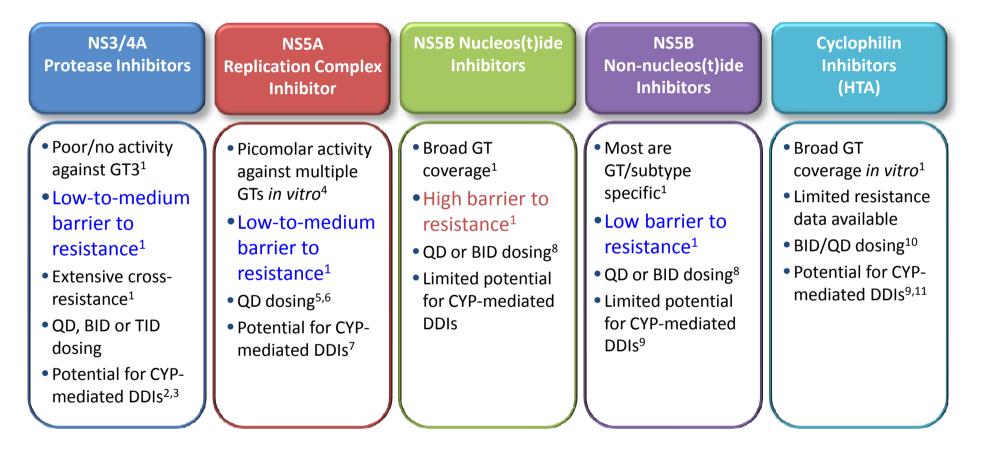
PROVE2 telaprevir study: PI resistance substitutions at baseline (UDPS sequencing; n=18)

Chevaliez S, et al. J Hepatol 2011;54(Suppl. 1):S30

Resistance associated variants (RAVs) to DAAs pre-exist Triple therapy with DCV + PR

- At baseline, polymorphisms at NS5A amino acid positions associated with resistance were observed in 13 of 36 patients treated with BMS-790052
- Overall, 11 patients treated with BMS-790052 met virologic failure criteria
 - Only 3 had baseline polymorphisms at positions associated with resistance (plus 1 lost to follow-up):
 - **GT 1a-NS5A:**-M28V, -H58P, -E62D
 - **GT 1b-NS5A:**-R30Q, -Q54H/N, -P58T/A/S, -Q62D/E, -A92E/V and -Y93H
 - Emerging resistance-associated variants detected in all patients who experienced viral breakthrough or relapse
 - **GT 1a-NS5A:** -Q30E/G, -Q30R-H58D, -Q30R/L31M, -L31M, and -L31M/Y93H
 - **GT1b-NS5A**:L28M-Y93H,P58A-Q62E-Y93H

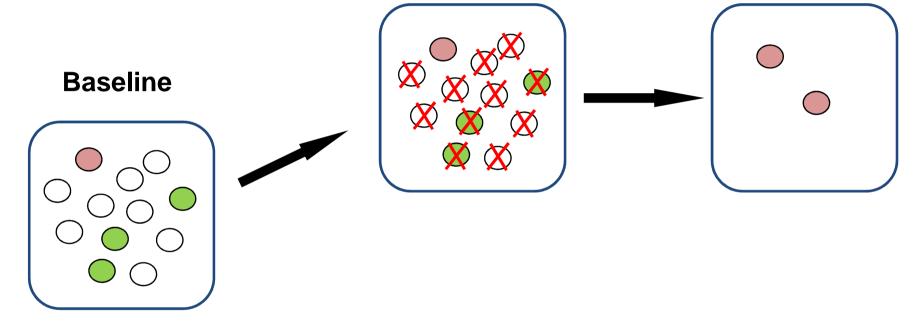
Resistance associatedvariants (RAVs) to DAAspre-exist


Antiviral potency and genetic barrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

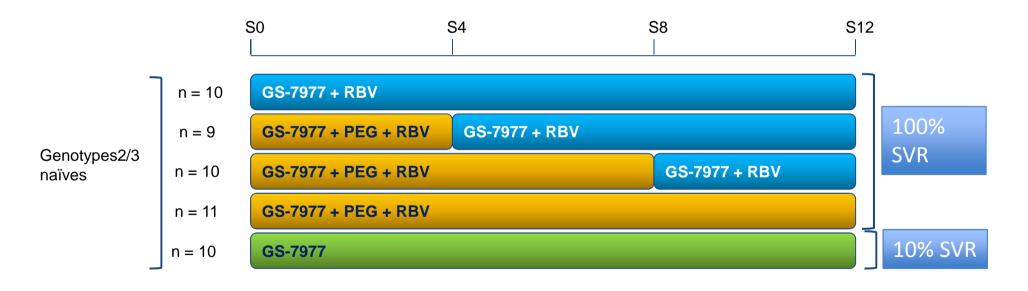
Virological	Pharmacological				
– Genetic Barrier	- Antiviral potency				
 Viral Fitness 	- Pharmacokinetics				
	- Adherence/tolerability				
0] (آسر) Sensitive wild HCV	- Combinations (DAA + Peg-IFN/RBV)				
Sensitive wild HCV -1- -2- -3- -4-	Resistant HCV				
Э́-4- -5-					

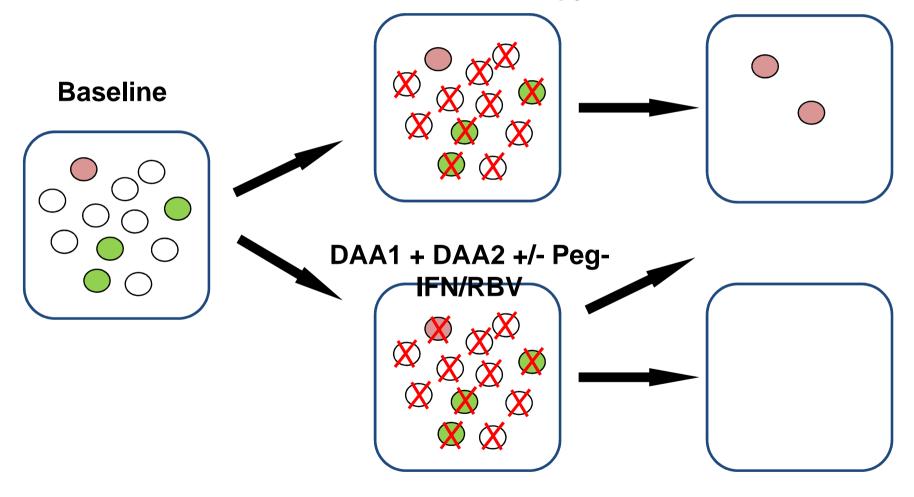
C E1 E2 P7	Host targets		
NS3	NS5A	NS5B	Cyclophilin A
The NS3/4A serine protease is essential for post-translational processing of HCV polyproteins ¹	Multifunctional membrane- associated phosphoprotein essential component of the HCV-RNA replication complex ^{2,3}	NS5B is an HCV-specific, RNA- dependent RNA polymerase ¹	Host protein involved in HCV replication through interaction with NS5A and the HCV polymerase ⁴
Boceprevir Telaprevir ABT-450/r,ACH-1625 Asunaprevir, TMC-435 (Simeprevir),BI-201335 Danoprevir/r,GS-9451 MK-5172	Daclatasvir GS-5885 ABT-267 PPI-668	Nucleos(t)ide analogue GS-7977,Mericitabine, IDX-184* Non-nucleoside analogue BI-207127,ABT-333 ABT-072,BMS-791325 Tegobuvir,Setrobuvir VX-222,Filibuvir	Alisporivir** SCY-635


Adapted from 1. PawlotskyJM, et al. *Gastroenterology*2007;132:1979–98; 2. TellinghuisenTL, et al. *Nature*2005;435:374–9; 3. Gish R & Meanwell NA. *Clin Liver Dis*.2011;15:627–39; 4. Coelmont L, et al. *PLoSOne*2010;5:e13678.

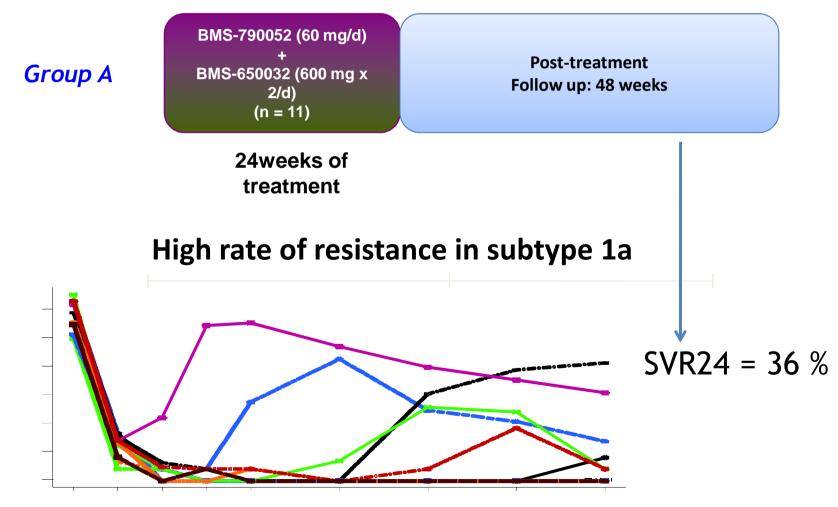
DDI=drug-drug interactions; HTA=host-targeted antiviral; GT=genotype

Created from 1.Sarrazin C, et al. J Hepatol. 2012;56:S88–S100; 2. Eley T, et al. AASLD 2011. Poster 381; 3. Sekar V, et al. EASL 2010, Poster 1076; 4. Gao M, et al. Nature 2010;465:96–100; 5. Pol S, et al. ICAAC 2011. Oral Presentation HI-376; 6. Lawitz EJ, et al. J Hepatol. 2012;Feb 4 [epub]; 7. Bifano M, et al. CROI 2012. Poster 618; 8. Poordad F, et al. Am J Manag Care 2011;17:S123–S130; 9. Seden K, et al. J Antimicrob Chemother. 2010;65:1079–1085; 10. Flisiak R, et al. EASL 2011. Oral 4; 11. Park S, et al. AASLD 2011. Abstract 364.


Monotherapy by DAA

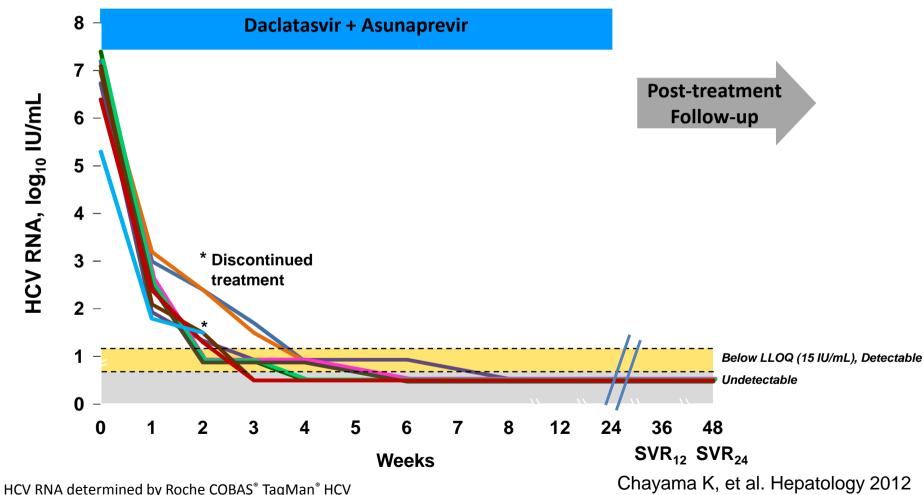


ELECTRON study



Antiviral potency and genetic barrier to resistance are both important The genetic barrier to resistance is increased by combinations

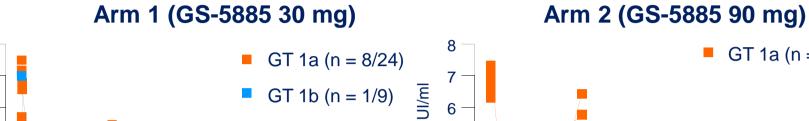
DAA monotherapy

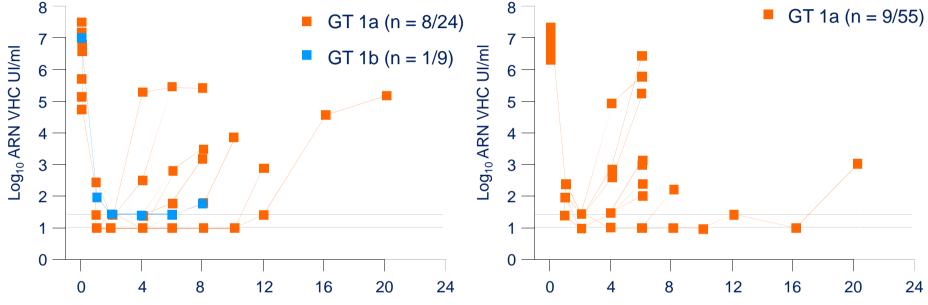


Antiviral potency and genetic barrier to resistance are both important Dual therapy with DCV + ASV in G1 null responders

Lok A.et al, NEJM 2012

Antiviral potency and gentic barrier to resistance are both important Dual therapy with DCV + ASV in G1b null responders

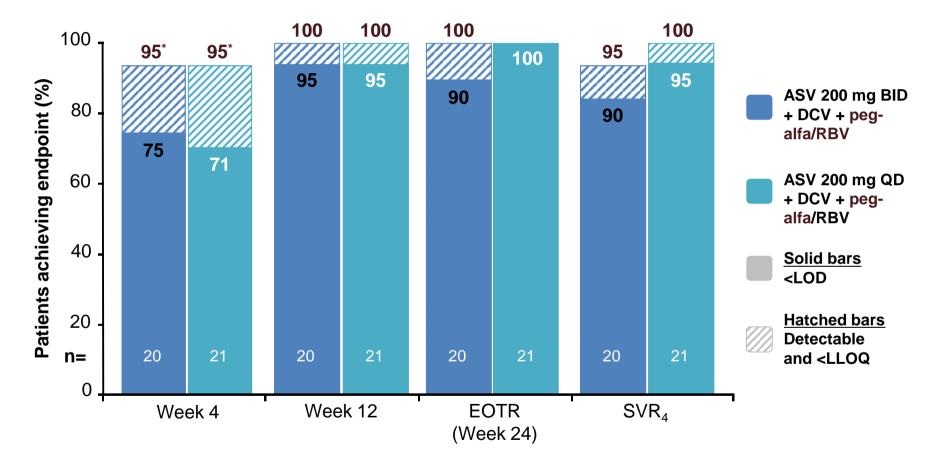

Auto assay (Roche Diagnostics KK, Tokyo, Japan), lower limit of quantitation (LLOQ)=15 IU/mL


Antiviral potency and genetic barrier to resistance are both important The genetic barrier to resistance is increased by combinations

100 SVR Week 4 Week 12 80 80 Patients with undetectable HCV RNA (<10 IU/mL (%) 80 62 60 60 50 46 43 36 40-20-Viral breakthrough 13 24% 1% 0 Peg-IFN + RBV **Telaprevir + Peg-IFN Telaprevir + Peg-IFN** (48 weeks) (12 weeks) + RBV (12 weeks)

Hézode C, et al. N Engl J Med 2009;360:1839-50

Oral Quad NS3/NS5A/NS5B inhibitors and ribavirin

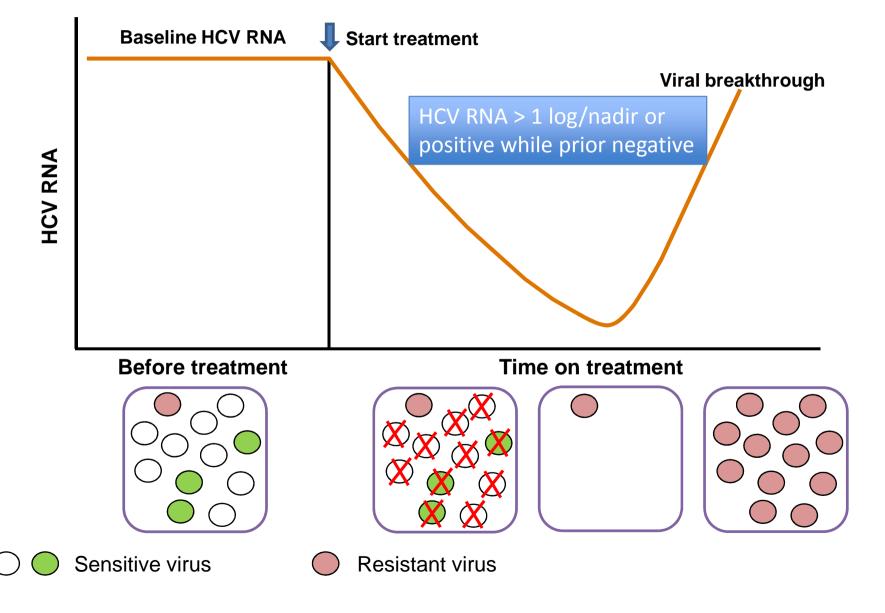

Weeks Weeks Fair safety and high potency of this 12 weeks oral Quad

Breakthrough occurred mainly in G1a

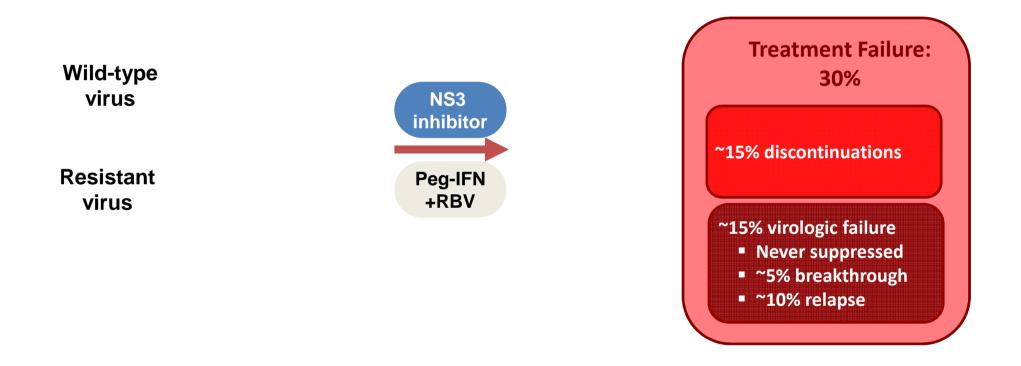
Sulkowski M, EASL 2012, Abs. 1421

Quad therapy with DCV + ASV + PR

Virological response rates

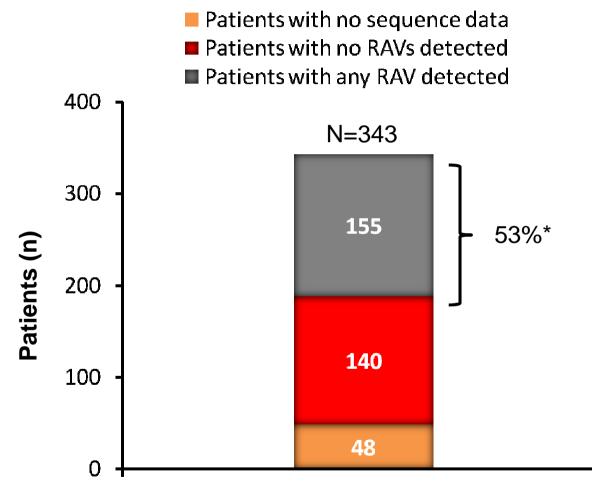

*1 patient with missing HCV-RNA measurement

 ASV=asunaprevir; DCV=daclatasvir; EOTR=end-of-treatment response; LOD=lower limit of detection (~10 IU/mL); LLOQ=lower limit of quantitation (25 IU/mL); peg-alfa=pegylated interferon alfa-2a; RBV=ribavirin; SVR=sustained virological response Adapted from Lok A, et al. EASL 2012. LB-1415. Resistance associatedvariants (RAVs) to DAAspre-exist


Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Regular monitoring of HCV RNA levels detects treatment failure and resistance

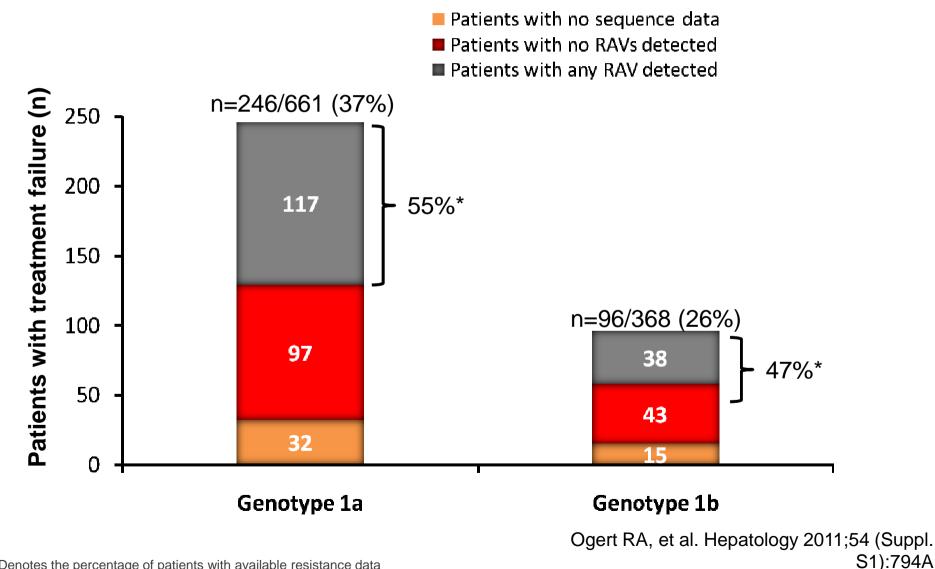


Incidence of resistance Resistance emerges as a result of treatment failure

McHutchison JG, et al. N Engl J Med 2009;360:1827–38; Hézode C, et al. N Engl J Med 2009;360:1839–50; Kwo PY, et al. Lancet 2010; 376:705–16 Kieffer T, et al. Hepatology 2010;52(Suppl.):879A; Jacobson IM, et al.N Engl J Med 2011;364:2405–16 Sherman KE, et al. Hepatology 2010;52(Suppl.):401A; Poordad F, et al. N Engl J Med 2011;364:1195–206 Bacon BR, et al. N Engl J Med 2011;364:1207–17

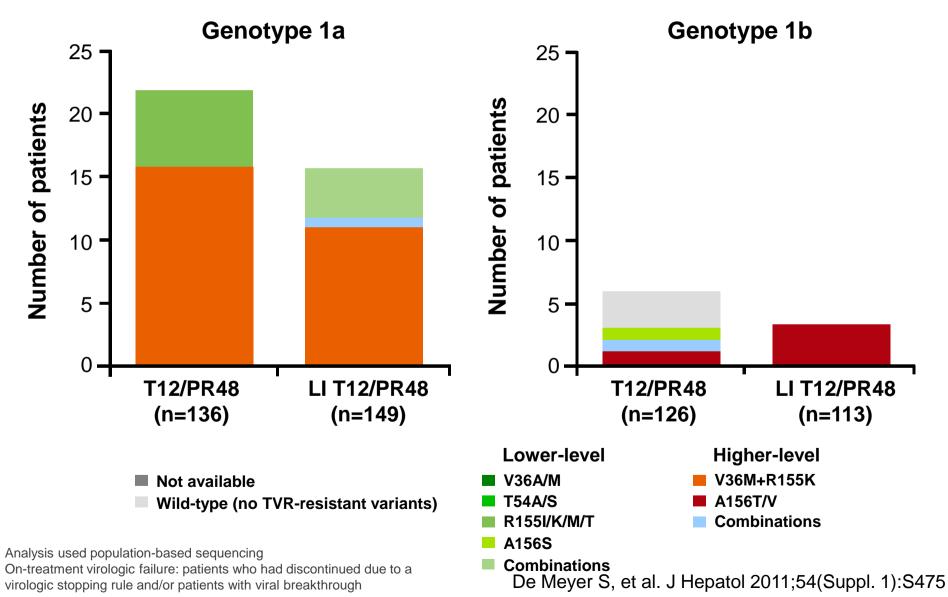
Boceprevir Phase III trials: frequency of RAVs in non-SVR patients

Virologic failure


*Denotes the percentage of patients with available resistance data Data from patients that failed during or after boceprevir combination treatment within Phase III studies of treatment-naïve and -experienced patients (n=1057 enrolled) Barnard RJ, et al. Hepatology 2011;54 (Suppl. S1):440A

Resistance associatedvariants (RAVs) to DAAspre-exist

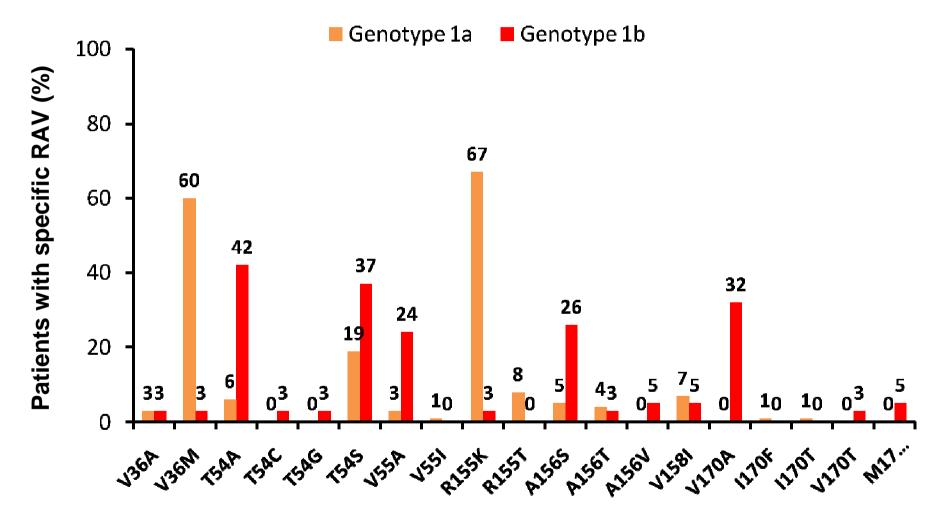
Antiviral potency and geneticbarrier to resistance are both important


- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Boceprevir RAVs occurred more frequently in genotype 1a vs 1b HCV

*Denotes the percentage of patients with available resistance data

Telaprevir RAVs occurred more frequently in genotype 1a vs 1b HCV (Realize)

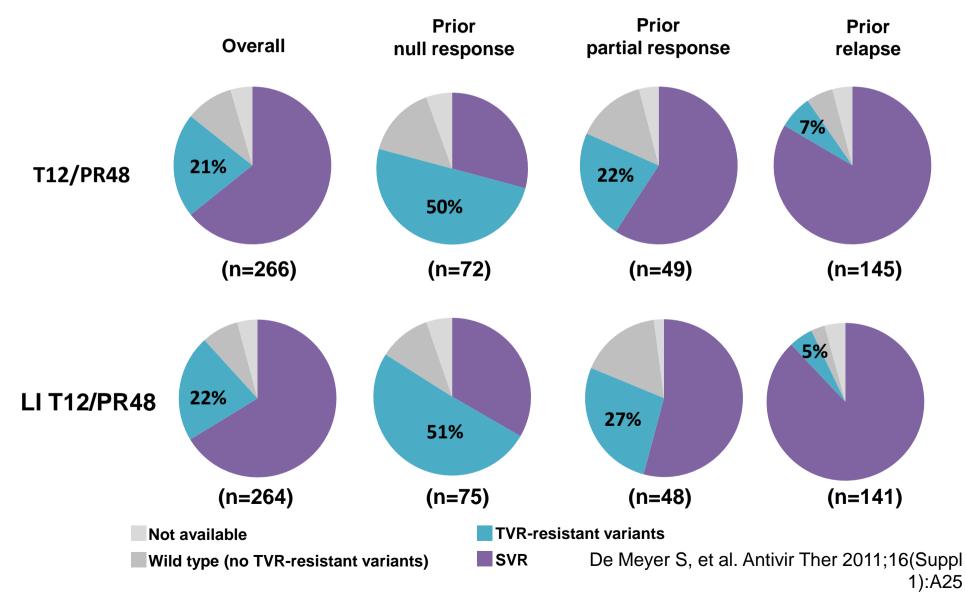


Resistance associatedvariants (RAVs) to DAAspre-exist

Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Frequency and distribution of boceprevir RAVs by genotype

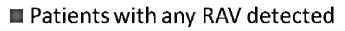

Barnard RJO, et al. Hepatology 2011;54 (Suppl. S1):440A

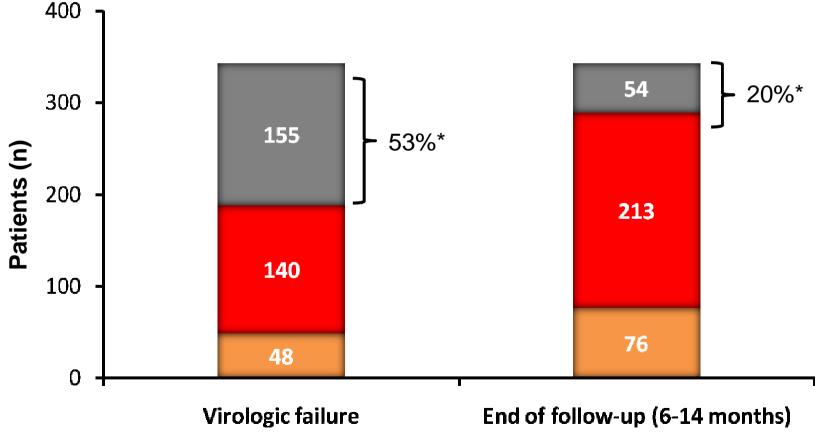
Resistance associatedvariants (RAVs) to DAAspre-exist

Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
 genetics of PAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

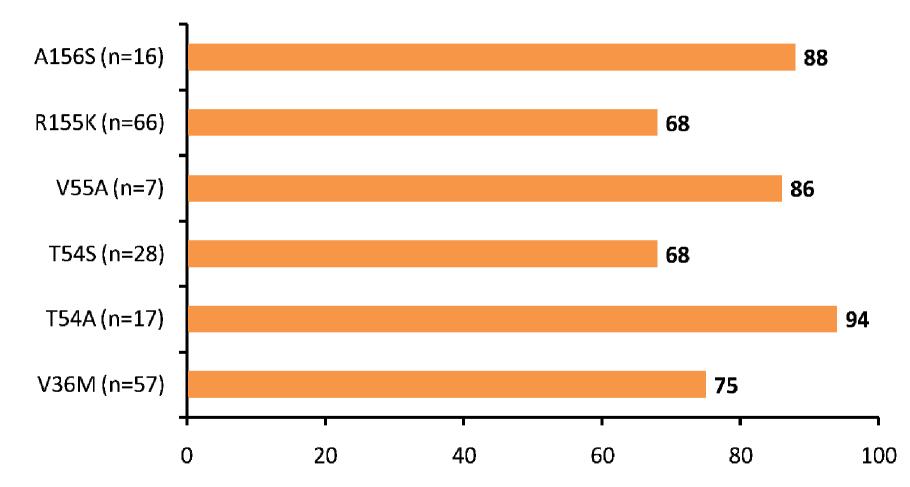
Realize: TVR-resistant variants at failure with or without a lead-in


Resistance associatedvariants (RAVs) to DAAspre-exist

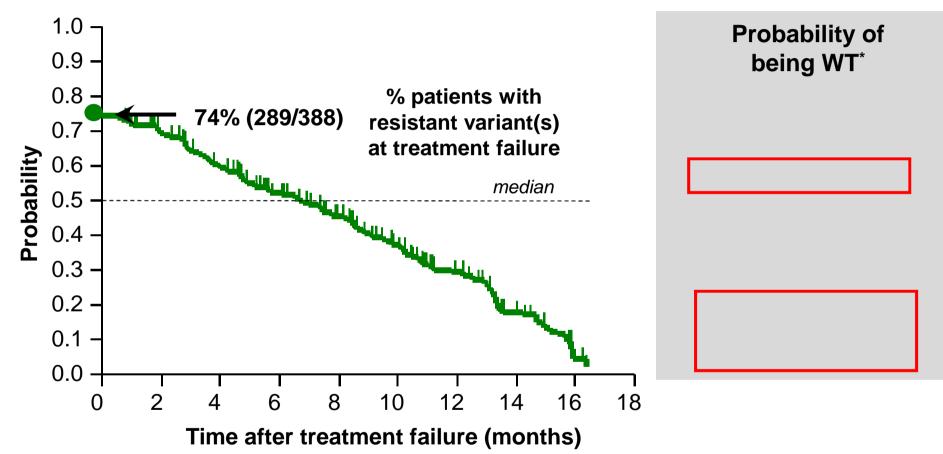

Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

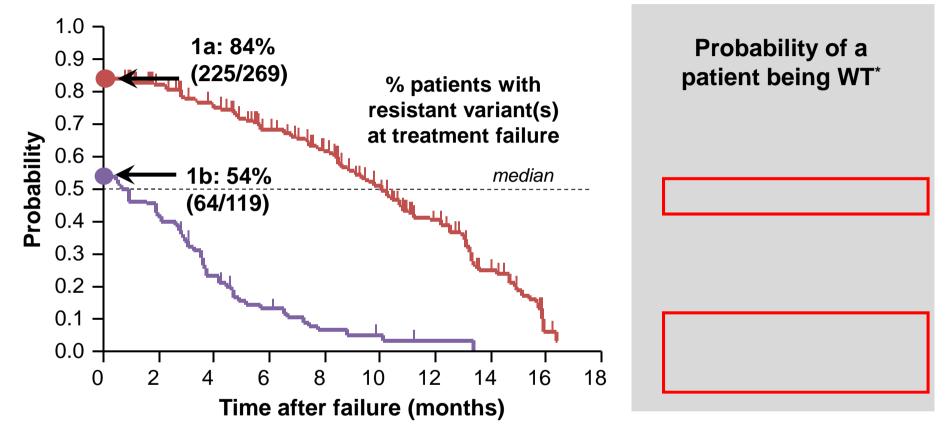
Boceprevir Phase III trials: follow-up of non-SVR patients with any detectable RAV


Patients with no sequence data Patients with no RAVs detected

Barnard RJ, et al. Hepatology 2011;54 (Suppl. S1):440A

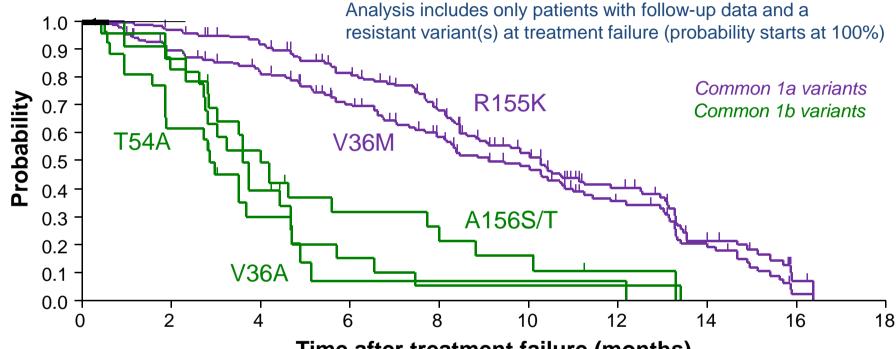

Boceprevir Phase III trials: detectability of most common RAVs* declines during follow-up

Patients with RAVs no longer detected by population sequencing (%)


*In non-SVR patients with detectable RAVs at treatment failure in SPRINT-2 and RESPOND-2. As of latest follow-up time point (range 6–14 months) Barnard RJ, et al. Hepatology 2011;54 (Suppl. S1):440A

Telaprevir Phase III trials: probability of RAVs being detected after treatment failure

• Median time to WT by population sequencing: 7 months (95% CI: 5, 8)


Telaprevir Phase III trials: probability of RAVs being detected after treatment failure

- Significant difference (p<0.0001) between genotype subtypes for the time to become wild-type by population sequencing (median, 95% CI)
 - 10 months (9,11) for genotype 1a, 0.8 months (0,2) for genotype 1b

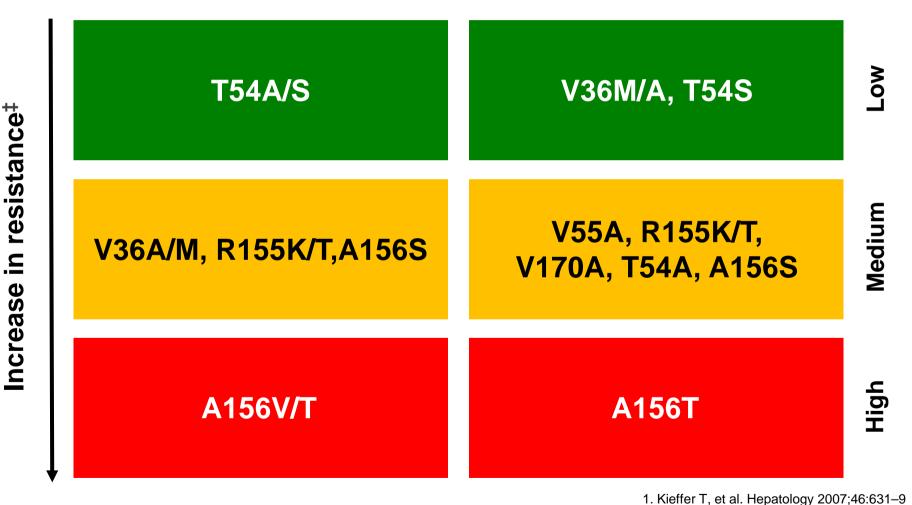
*Based on Kaplan-Meier estimation using population sequencing; hash marks in plot indicate censored observations

Telaprevir Phase III trials: loss of resistant variants according to NS3 position

Time after treatment failure (months)

	V36M	R155K	V36A	T54A	A156S/T
Median months to loss (95% Cl)	9 (8,11)	10 (9,11)	4 (3,4)	3 (2,4)	4 (3,6)

Sullivan JC, et al. J Hepatol 2011;54(Suppl. 1):S4


Resistance associatedvariants (RAVs) to DAAspre-exist

Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatmentwithRAVs

Single resistant variants associated with telaprevir and boceprevir*

Telaprevir resistant variants^{1–3} Boceprevir resistant variants^{4–6}

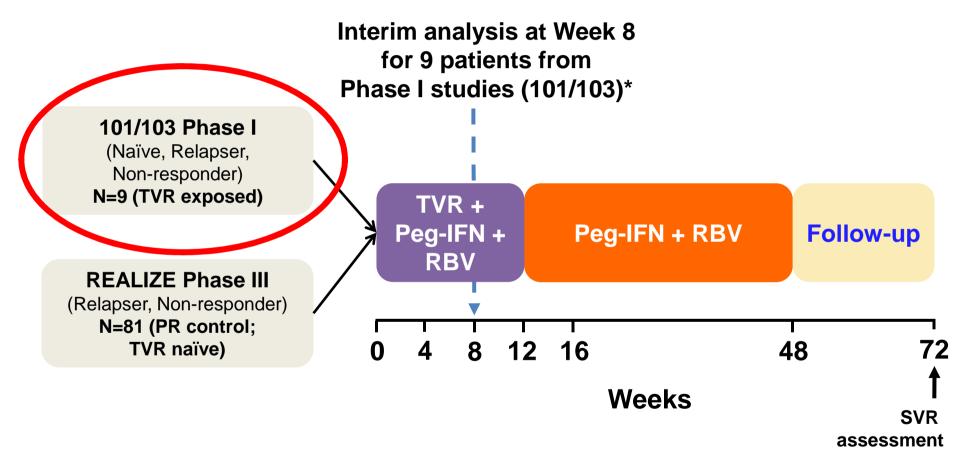
2. Kieffer T, et al. Hepatology 2010;52(Suppl.):879A; 3. De Meyer S, et al. J Hepatol 2011;54(Suppl. 1):S475

*Double mutants have also been reported with telaprevir and boceprevir; [‡]Measured by fold change in IC_{50} in the HCV replicon assay

4. Susser S, et al. Hepatology 2009;50;1709–18; 5. Zeuzem S, et al. J Hepatol 2011;54(Suppl. 1):S4 6. Ogert RA, et al. Hepatology 2011;54 (Suppl. S1):794A

Lack of cross-resistance between Peg-IFN/RBV and DAAs

		DAA class							
Amino Acid	HCV Target	NS3 Linear	NS3 Macrocyclic	NS5A inhibitor	NS5B nucleoside	NS5B Palm	NS5B Thumb	IFN	RBV
V36		R	S	S	S	S	S	S	S
T54		R	S	S	S	S	S	S	S
V55		R	S	S	S	S	S	S	S
V170	NS3	R	S	S	S	S	S	S	S
R155	Protease	R	R	S	S	S	S	S	S
A156		R	R	S	S	S	S	S	S
Q80		S	R	S	S	S	S	S	S
D168		S	R	S	S	S	S	S	S
M28		S	S	R	S	S	S	S	S
Q30	NS5A	S	S	R	S	S	S	S	S
L31	NSSA	S	S	R	S	S	S	S	S
Y93		S	S	R	S	S	S	S	S
S282		S	S	S	R	S	S	S	S
C316		S	S	S	S	R	S	S	S
M414		S	S	S	S	R	S	S	S
Y448	NS5B	S	S	S	S	R	S	S	S
R422		S	S	S	S	S	R	S	S
M423		S	S	S	S	S	R	S	S
P495		S	S	S	S	S	R	S	S


Kieffer T, et al. J Antimicrob Chemother 2010;65:202–12

R: resistant (>4-fold increase in EC_{50}) S: susceptible (<4-fold change in EC_{50}) Gao M, et al. Nature 2010;465:96–100; Lagrace L, et al. Hepatology 2010;52(4 Suppl):1205A Lenz O, et al. Hepatology 2010;52(4 Suppl):709A; Zeuzem S, et al. Hepatology 2010;52(4 Suppl):400A Resistance associatedvariants (RAVs) to DAAspre-exist

Antiviral potency and geneticbarrier to resistance are both important

- definition and incidence
- impact of viral subtypes
- -genetics of RAVs
- no impact of the lead in phase
- persistence of RAVs
- cross-resistance
- re-treatment with RAVs

C219: Phase IIIb, open-label, roll-over study

All 9 patients had completed Week 8 of treatment at the time of the analysis; Peg-IFN alfa-2a=180µg/week RBV=1000–1200 mg/day; TVR=750 mg every 8 hours; HCV RNA determined using Roche COBAS TaqMan[®] assay version 2.0 (lower limit of quantification [LOQ] 25 IU/mL, lower limit of detection [LOD] approximately 10 IU/mL) Sarrazin C, et al. Hepatology 2011;54 (Suppl. S1):377A C219: virologic response to TVR-based treatment (previously TVR exposed)

	Responders, n (%)							
Week	<25 IU/mL HCV RNA	<25 IU/mL 'undetectable' HCV RNA						
1	3 (33)	0						
2	6 (67)	1 (11)						
4	8 (89)	3 (33)						
6	7 (78)	6 (67)						
8	8 (89)	6 (67)						

TVR-resistant variants during Phase I Studies 101 and 103: V36A/M+R155K/T/G (n=6); A156T/V (n=1); V36A+T54A (n=1); one patient with HCV RNA <100 IU/mL at end of treatment had wild-type virus during follow-up

No variants were detected by population sequencing before initiation of Study C219

Sarrazin C, et al. Hepatology 2011;54 (Suppl. S1):377A

The impact of resistance : conclusions

- Resistance associated variants (RAVs) to DAAs pre-exist

- Antiviral potency and genetic barrier to resistance are important to limit the occurrence of resistance

- Resistance is not frequent , depends on viral subtypes and may be by-passed by adapted combinations of DAAs

-Dual, Triple or Quad regimen should be tailored to the hostand virus-related factors (subtype, fibrosis, prior therapies and tolerance, co-morbidities, DDI): the best "à la carte" combination