

Including CHIVA Parallel Sessions

Dr Alan Winston

Imperial College Healthcare NHS Trust, London

9-10 October 2014, Queen Elizabeth II Conference Centre, London

Dr Alan Winston

Imperial College Healthcare NHS Trust, London

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:					
Speaker Name	Statement				
Dr Alan Winston	has received honoraria or research grants from or been a consultant or investigator in clinical trials sponsored by Abbott, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline, Janssen-Cilag, Roche, Pfizer and ViiV Healthcare				
Date	October 2014				

Managing cognitive impairment in the clinic.

Alan Winston St. Mary's Hospital, London 10th October 2014

How big is this problem?

Question 1 : How big is this problem?

Imperial College

London

1. 2-20%

Cognitive impairment

Prevalence of HIV-associated cognitive impairment:

Clinical implications of HIV-associated cognitive impairment:

- Social: Employment, undertake ADL
- Disease: loss of effective control of HIV

Natural history of asymptomatic NCI

Relative risk of progressing

• 4.70 (CI: 2.93–7.71)

Imperial College

London

Question 2 : Who should we look for it in?

1. Everyone

Guideline recommendations

EACS 2012 Guidelines:

'All persons, irrespective of symptoms and signs of NCI without confounding conditions'

Repeat screening every 2 years

BHIVA 2013 Standards of Care:

'PLWH should be screened for the presence of symptoms of and cognitive difficulties within the first 3 months of receiving an HIV diagnosis'

'Such screening should be repeated on an annual basis'

Initial screening tools

EACS 2012 Guidelines:

Screen with 3 questions:

- 1. Do you experience frequent memory loss (e.g. do you forget the occurrence of special events even the more recent ones, appointments, etc.)?
- 2. Do you feel that you are slower when reasoning, planning activities, or solving problems?
- 3. Do you have difficulties paying attention (e.g. to a conversation, book or movie)?

For each question, answers could be: a) never, b) hardly ever, or c) yes, definitely. Results are considered "abnormal" when answering "yes, definitely" on at least one question.

BHIVA 2013 Standards of Care:

' Screening may vary from documented responses to specific screening questions, all of which should be empirically validated for use in HIV or with other chronic health conditions'

Can the EACS guidelines for neurocognitive testing be practically implemented into a UK clinical setting? Poster BHIVA 2012

Assessment	Number (%) positive	Number (% total) remaining screening
Total number		58 (100%)
Confounding conditions	24 (41%)	34 (59%)
Three screening questions	5 (15%)	

Neuropsychological testing

Key investigation:

- Characterising cognitive impairment
- Subjects with symptoms of cognitive impairment or positive screening tests

Essential to rationalise use:

- Excluded depression first
- Excluded confounding conditions first
 - Psychiatric conditions, use psychotropic drugs and alcohol abuse, sequalae from previous or current CNS-OI or neurological diseases

Essential to interpret the results in correct clinical context:

- Consider the control population
- Discuss results with the neuropsychologist

In cases where cognitive impairment suggested:

- Further investigations to exclude confounding conditions
 - MRI brain
 - CSF examination (also assess viral suppression)

Phenotype of dementias

	Cortical	Sub-cortical
Type of dementia	Alzheimers, fronto-temporal dementia	HIV-dementia, Parkinsons, Huntingtons
Main area(s) of damage	Cerebral cortex	Basal ganglia, thalamus
Language problems / aphasia	Common, early	No
Memory problems	Common, early	Rare
Personality / frontal changes	No	Common (typically emotional / irritable / personality change)
Executive / higher function decisions	Yes	Yes
Attention / motivation problems	No	Common, early

Is the phenotype changing?

The effects of age and HIV infection on neuropsychological performance were analysed on the basis of HIV serostatus and age (<60 vs ≥60)

	HIV Neg	gative HIViPostit e			Effects (FValeues)		
	Younger, n = 22	Older, n = 17	Younger, n = 122	Older, n = 31			
Test	Mean±Standard Deviatio					Aging	HIV by Aging
Rey Auditory Verbal Learning Test							
Immediate recall	43.0 <u>+</u> 6.9	37.4 ± 8.1	39.0 <u>+</u> 8.4	33.6 ± 8.9	5.21*	13.64 ^b	0.07
Delayed recal	9.1 ± 2.6	7.2 ± 2.3	7.9 <u>+</u> 2.6	6.6 ± 3.0	3.00	9.44 ^b	0.33
Digit Span							
Forward	6.0 ± 1.0	5.1 ± 1.0	5.6 ± 1.1	5.3 <u>+</u> 0.9	0.04	9.10 ⁶	2.82
Backward	4.9 <u>+</u> 1.1	3.7 <u>+</u> 1.2	4.2 <u>+</u> 1.3	3.9 <u>+</u> 0.9	1.51	10.41 ^b	2.84
Spatia Span							
Forward	5.6 ± 0.9	4.8 ± 0.7	4.8 <u>+</u> 0.9	4.5 <u>+</u> 0.9	9.78	9.35⁵	2.05
Backward	4.4 ± 1.2	3.3 ± 0.5	3.9 <u>+</u> 1.1	3.5 ± 0.8	0.44	17.05 ^b	3.08
Rey complex figr e copy	33.2 <u>+</u> 2.4	30.6 ± 3.8	32.2 ± 3.4	29.2 ± 5.0	3.18	15.70 ^b	0.09
Rey complex figr e delayed recall	16.0±5.6	13.1 ± 5.8	13.9 ± 5.8	9.2 ± 6.1	6.79 ^b	11.28 ^b	0.60
Stroop Test							
Errors	0.9 ± 1.1	1.9 ± 3.2	1.2 ± 1.8	2.1 ± 2.6	0.51	6.21 ^b	0.02
Time	18.5 <u>+</u> 7.7	32.7 ± 14.7	17.4 <u>+</u> 8.5	29.1 <u>+</u> 14.4	1.41	42.25 ^b	0.35
Trial-Making Test Part B							
Time	102.7 <u>+</u> 26.2	182.4 <u>+</u> 70.8	135.9 <u>+</u> 48.8	187.4 ± 70.1	2.38	29.71 ^b	2.57
Errors	0.5 ± 0.9	1.3 ± 1.0	0.8 ± 1.1	1.4 ± 1.3	0.76	10.00 ^b	0.09
Drawings	5.1 ± 1.7	4.9 ± 1.5	4.8 ± 1.7	3.8 <u>+</u> 2.3	3.77	3.23	1.40
Raven matricese	32.1 ± 3.42	27.00 ± 4.9	29.3 <u>+</u> 4.8	27.2 ± 5.5	1.88	14.89 ^b	2.46
Letter flunc y	39.6 <u>+</u> 9.0	32.7 ± 10.9	34.9 <u>+</u> 11.5	29.7 ± 14.7	3.03	7.34 ^b	0.15
Wechsler Adult Intelligence Scale Digit Symbol	9.4 ± 2.0	9.3 ± 2.8	8.6 ± 2.5	8.9 ± 2.3	3.02	7.34 ^b	0.15
Doublerbarrage	0.98 <u>+</u> 0.23	0.98 ± 0.02	0.96 <u>+</u> 0.04	0.90 ± 0.19	8.43 ^b	3.59	3.83
Reactio tine t ask score	657.8 <u>+</u> 162.1	779.4 ± 258.1	777.3 ± 184.2	883.7 ± 199.6	3.05	15.10 ^b	1.38
Total number of pathological scores	1.3 <u>+</u> 0.9	2.7 ± 2.2	2.6 <u>+</u> 2.6	3.5 ± 2.5	5.73°	7.13 ^b	0.66

Cognitive performance in older HIV+ participants was not distinct from younger HIV+ participants

Question 3: clinical scenario

A 45 year old man naïve to ART:

CD4 count 530 cells/uL HIV RNA 8000 copies/mL Complaining difficulty concentrating at work MRI brain normal and excluded confounding conditions Formal NP testing reports impaired testing results

What do you do?:

1. Monitor closely with NP testing yearly

13%

2. Commence ART

44%

3. Commence ART including AZT

6%

4. Commence ART with a high CPE score

36%

Management cognitive impairment

Imperial College

London

Nadir CD4

Management cognitive impairment

Management cognitive impairment

Viral escape

Definition

- Lack of plasma virological suppression
- Lack of CSF virological suppression
 - Generally considered CSF HIV RNA 1log greater than plasma HIV RNA

Viral escape

Definition

- Lack of plasma virological suppression
- Lack of CSF virological suppression
 - Generally considered CSF HIV RNA 1log greater than plasma HIV RNA

How common is this?

Asymptomatic subjects:

- 10-15% of subjects with suppressed plasma viraemia ^{1,2}
- 10% in those not on ART
- Higher rates if ultrasensitive assays used ³
- Associated with markers of inflammation

Symptomatic subjects:

- Reported 20-100% subjects (depending on symptoms)
- Canestri syndrome ⁴
- Resistance mutations well described in CSF when not apparent in the plasma compartment / resistance associated with lower plasma HIV RNA ⁵

- 1. J Infect Dis. 2010 Dec 15;202(12):1819-25,
- 2. J Infect. 2012 Sep;65(3):239-45.
- 3. AIDS. 2014 Jul 14.

4 Clin Infect Dis. 2010 Mar 1;50(5):773-8

Imperial College

London

5 AIDS. 2010 Sep 24;24(15):2412-4.

Viral escape

Definition

- Lack of plasma virological suppression
- Lack of CSF virological suppression
 - Generally considered CSF HIV RNA 1log greater than plasma HIV RNA

How common is this?

Asymptomatic subjects:

- 10-15% of subjects with suppressed plasma viraemia ^{1,2}
- 10% in those not on ART
- Higher rates if ultrasensitive assays used ³
- Associated with markers of inflammation

Symptomatic subjects:

Reported 20-100% subjects (depending on symptoms)

Imperial College

London

- Canestri syndrome ⁴
- Resistance mutations well described in CSF when not apparent in the plasma compartment / resistance associated with lower plasma HIV RNA ⁵

Management

- Optimise ART guided on current and historical plasma and CSF resistance testing
 - 1. J Infect Dis. 2010 Dec 15;202(12):1819-25,
 - 2. J Infect. 2012 Sep;65(3):239-45.
 - 3. AIDS. 2014 Jul 14.

- 4 Clin Infect Dis. 2010 Mar 1;50(5):773-8
- 5 AIDS. 2010 Sep 24;24(15):2412-4.

Cardiovascular risk factors

SMART neurology substudy

- 292 patients
 - median CD4 536 cells/mm³
 - 88% viral load <400 copies/mL
 - 92% on ARVs
- CVD and <u>risk factors</u> associated with poorer cognitive performance

Pathogenesis

- Underlying cerebral vascular disease
- Increased inflammatory responses

				7 scores
Factors	Population%	NCI	QNPZ-5	GPB
Age (per 10 years)		NS	NS	NS
Gender (female vs male)	41.7	NS	<i>P</i> =0.05 -0.21	NS
Race/ethnicity (black vs other)	19.7	<i>P</i> =0.08 2.25	P<0.001 -0.48	NS
Prior AIDS	20.7	<i>P</i> =0.08 0.41	<i>P</i> =0.05 0.24	-
Hepatitis B	2.1	-	<i>P</i> =0.05 -0.66	<i>P</i> =0.03 −1.05
Prior CVD	3.5	<i>P</i> =0.01 6.17	<i>P</i> =0.02 -0.65	<i>P</i> =0.06 -0.71
Blood pressure-lowering drugs	11.0	-	<i>P</i> =0.03 -0.37	-
Total cholesterol (per 10 mg/mL)		<i>P</i> =0.06 1.08	<i>P</i> =0.02 -0.03	-
HDL (per 10 mg/mL)		_	_	P=0.03 -0.11
Depression (CES-D ≥16)	23.8	-	<i>P</i> =0.07 -0.21	-

PET imaging – PK11195

Subjects:•HIV infected on cART•Truly neuroasymptomatic

Increase binding PK11195 neuroasymptomatic HIV infection compared to HIV uninfected controls (n=7, 9)

		MNI coordinates			
Location of cluster	Z-score	x	у	z	P-value
L corpus callosum	4.61	-4	4	22	0.001
R anterior cingulate	3.28	6	12	10	0.001
R temporal lobe	5.60	26	0	-32	0.001
Posterior corpus callosum/ L posterior cingulate	3.90	-4	-56	2	0.008
L temporal lobe	3.83	-40	-2	-28	0.026
L frontal lobe	3.82	-12	4	-16	0.038

Garvey et al, AIDS. 2013 Jul 24

Efavirenz and cognitive function

146 patients

129 (88.4%) were on cART

69 (47%) were classified as cognitively impaired

•35.6% asymptomatic

•11.6% mild neurocognitive impairment

Variable		β	OR	95% CI	P-value	β	OR	95% CI	P-value
		Univariate			Multivariate				
Gender	(male versus female)	0.25	0.78	(0.41–1.51)	0.466				
Age	per 10 years	0.26	0.77	(0.58–1.03)	0.078	0.19	0.83	(0.60-1.16)	0.296
Education	per year	0.12	0.89	(0.81–0.97)	0.012	0.16	0.85	(0.77–0.94)	0.002
Non-Italian born	versus Italian born	1.1	3.01	(1.09-8.35)	0.034	1.24	3.46	(1.09-10.99)	0.035
IVDU		0.13	1.14	(0.46-2.82)	0.78				
HCV		0.3	0.74	(0.33–1.69)	0.479				
Time since HIV diagnosis	per year	0.02	0.98	(0.93-1.03)	0.355				
AIDS defining illness		0.29	1.34	(0.64–2.81)	0.441				
CD4 nadir	per 100 cells	0.13	0.88	(0.69-1.12)	0.294				
Time on cAPT	por one vear increase	0.02	1 02	(0.04_1.11)	0 630				
Efavirenz use		1.26	3.53	(1.37–9.08)	0.009	1.39	4	(1.43–11.20)	0.008
сре гапк	>/	0.45	1.43	(U.68–3.00)	0.340				
HIV RNA	per log increase	0.19	0.83	(0.58-1.19)	0.312				
HIV RNA < 50 copies/mL		0.64	1.9	(0.86–4.21)	0.114				
CD4 cell count	per 100 cell increase	0.05	0.96	(0.86-1.07)	0.42				

Interventional studies

What not to do

Cognitive imp Intervention	pairment	Mechanism of action	Outcome	
Abacavir		Antiretroviral intensification	Failed PLoS Clin Trials. 2007 Mar 30;2(3)	
Lithium		Reduce virus-induced neurodegeneration	Failed J Neurovirol. 2009;15(2):176-86	
Selegeline	CH ₃ CH	Decrease oxidative stress	Failed Neurology. 2009; 8;73(23):1975- 81	
Memantine	33555 P	N-Methyl-D-aspartate (NMDA) receptor antagonist	Failed AIDS 2007, 21:1877–1886	

ART intensification

CPE score and outcome

Unadjusted **CPE** Score 95% CI Event Person-Years **Events** HR Adjusted HR 95% CI HIV dementia 1.00 (reference) Low 128,302 115 1.00 (reference) Medium 63 0.98 (0.71, 1.34)1.04 (0.74, 1.47)74,338 High 31,137 32 1.41 (0.95, 2.10)1.57 (1.01, 2.44)**Opportunistic Infections *** 1.00 Low 127,904 221 1.00 (reference) (reference) Medium 74.027 109 1.07 (0.85, 1.35)0.97 (0.76, 1.24)1.13 0.98 High 31,035 45 (0.81, 1.56)(0.69, 1.39)Toxoplasmosis 128,299 94 (reference) 1.00 (reference) Low 1.00 Medium 74,347 34 0.84 0.81 (0.53, 1.23)(0.57, 1.25)High 31,126 17 0.92 (0.54, 1.55)0.85 (0.47, 1.52)Cryptococcal meningitis Low 128.385 (reference) (reference) 61 1.00 1.00 Medium 74,333 1.27 0.97 41 (0.85, 1.90)(0.62, 1.50)High 31,153 15 1.34 (0.76, 2.37)1.01 (0.56, 1.83)Progressive multifocal leukoncephalopathy Low 128,413 72 1.00 (reference) 1.00 (reference) Medium 74,358 36 1.16 (0.77, 1.74)1.09 (0.71, 1.69)31,156 15 1.28 (0.72, 2.27)1.16 (0.63, 2.15)High

Hazard ratios for CPE score, HIV-CAUSAL Collaboration, 1998-2013

Neurology. 2014 Jul 8;83(2):134-41

Management cognitive impairment

Managing cognitive impairment in the clinic.

Thank you

- Paola Cinque, Milan, Italy
- Renaud du Pasquier, Lausanne, Switzerland

Questions:

