Sixth Annual BHIVA Conference for the Management of HIV/Hepatitis Co-Infection *in collaboration with BASL and BVHG*

Professor Karine Lacombe Hospital Saint-Antoine, Paris, France

COMPETING INTEREST OF FINANCIAL VALUE > £1,000:		
Speaker Name	Statement	
Prof Karine Lacombe	None	
Date	November 2013	

Wednesday 13 November 2013, Queen Elizabeth II Conference Centre, London

Sixth Annual BHIVA Conference for the Management of HIV/Hepatitis Co-infection in collaboration with BASL and BVHG Wednesday 13 November 2013

HBV in HIV patients: is it still an issue?

Dr Karine Lacombe, M.D, PhD

Saint-Antoine Hospital, Paris

Inserm UMR-S707

Université Pierre et Marie Curie, Paris VI

HBV in HIV patients: the continuum of care

HBV immunization in HIV

- Unsufficient HBV vaccine coverage and vaccine response¹:
 - 32% of eligible patients were vaccinated
 in those with one injection, immunization course completed in 57%
 - achivement of protective Ab titer in 37%

¹Tedaldi EM, Clin Infect Dis 2004

Increasing HBV immunization

→2 options:

- increasing the dosing (40μg instead of 20μg)
- increasing the number of injections (4 instead of 3)

Confirmed by a meta-analysis of 5 trials (883 patients): OR = 1,82 (1,47 – 2,61) of higher HBsAb titer in 4-doses v. 3-doses schedule

Ni JD, et al. Int J STD AIDS 2013

Launay O. et al, JAMA 2011

Treatment as prevention in HBV

results – 2 Kaplan Meier: HBV free survival (MSM)

- Dutch HIV cohort of 2942 patients¹
- 871 « HBV susceptible »
- 35 HBV-infected during followup
- Treating non protected patients with TDF prevented transmission
- Same results in the study by Gatanaga²

Should TDF be used within « treatment for prevention » paradigm?

¹Heuft M, et al. CROI 2013. ²Gatanaga, Clin Infect Dis 2013

Management of isolated HBcAb

SHOULD WE TREAT?

- Frequency of occult HBV differing regarding geographical origin: <1% in Europe¹, ≈5% in Africa²
- Most patient on TDF in Europe: controled « occult HBV »?
- High risk of reactivation at treatment interruption³

SHOULD WE IMMUNIZE?

- In 40 patients vaccinated with 1 to 6 vaccine doses⁴:
 - anamnestic response: 32%
 - Vaccine response:74%
 - Durability of response: 74% of patients with median titer = 61UI at 1 year
- In 37 patients vaccinated with 1 to 3 vaccines doses⁵
 - anamnestic response: 22%
 - Vaccine response: 60%
 - Durability of response: 52% of patients at 2 years

anti-HBV treatment is indicated, immunization is not recommended

¹Liang SH, J AIDS 2010. ²N'Dri Yoman T. Antivir Ther 2010. ³Bloquel B, J Med Virol 2010. ⁴Chakvetadze C, et al. CID 2011. ⁵Kaech C, et al. J Infect 2012

HBV infection and mortality risk (1)

 multicenter cohort + metaanalysis of 12 382 patients, either HIV+ or HIV/HBV

36% excess risk of dying (all cause) if HBs pos. compared to HBs neg.

Higher mortality risk in HIV-HBV compared to HIV patients between 1992 and 2007

Nikolopoulos G, Clin Infect Dis 2009

HBV infection and mortality risk (2)

■ MACS cohort: (337HBs+ - 343
 HCV+) of whom 452 HIV+ → 6728
 person-years of F/U, 293 deaths

Figure 1. Time trend in liver-related mortality rates by hepatitis and human immunodeficiency virus type 1 status. Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IRR, incidence rate ratio; PY, person-year.

Table 3. Multivariable Individuals	Analysis	of Liver Death in	HIV-Infected
Variable	IRR	95% CI	P Value
Hepatitis status			
HCV	1		
HBV	2.2	1.1-4.5	.03
Older age			
Per 10-year increase	1.6	1.1-2.3	.01
Latest CD 4 count			
>350 cells/mm ³	1		
200–350 cells/mm ³	7.0	2.4-20.1	<.001
<200 cells/mm ³	16.2	6.1-42.8	<.001

→ RR=2,2 [1,1 – 4,5] of dying of liver-related cause when HBs pos. V. HCV pos.
 → No difference between HCV and HBV regarding all cause deaths

Impact of cART on liver-related deaths

Table 3. The adjusted IRR of cause-specific death by year longer on cART.			
Cause of death	IRR	95% CI	Р
All-cause	0.95	0.92-0.97	< 0.001
AIDS	0.86	0.81-0.91	< 0.001
Non-AIDS	0.97	0.95 - 1.00	0.061
NARI-death	0.97	0.90-1.05	0.417
LR-death	0.94	0.89 - 1.00	0.053
NADM-death	1.07	1.00 - 1.14	0.056
CVD-death	0.99	0.93-1.06	0.885
Violent death	0.90	0.81 - 0.99	0.027
Other death	1.01	0.94 - 1.09	0.725
Unknown death	0.94	0.86-1.01	0.096

CI, confidence interval; CVD, cardiovascular disease; IRR, incidence rate ratio; LR, liver-related; NADM, non-AIDS-defining malignancies; NARI, non-AIDS-related infection. Models' adjustment as in Table 2.

 Eurosida cohort: 12069 patients included in analysis

Clinical outcomes in the era of cART

92 patients, 82% treated with FTC/TDFmedian f/u=39 months¹

Fig. 1. Survival and liver decompensation in the HIVhepatitis B virus coinfected study population.

Martin-Carbonero, et al. AIDS 2011

I(death): 2,2 / 100 p.y
I(liver dec.) 2,9 / 100 p.y
→ Close to what is observed in HIV general population

liver fibrosis stability in 75% of patients

Survival rate in transplanted patients: data from France

- 13 patients (1HDV+, 2 HCV+, 4 HCV-HDV+)
- Indication for OLT: decompensated cirrhosis (10) and HCC (3)
- Treatment after OLT: combination of TDF / 3TC + HBIg
- Overall survival rate at 32months: 100%
 - No mitochondrial toxicity
 - Controled HBV-DNA, HDV-RNA, HIV-RNA
 - Successful treatment with PR in 1/3 HCV-RNA+

Tatteo, et al. AIDS 2009

Survival rate in transplanted patients: data from the USA

- 22 patients (2 HCV+) matched with 20 HBV monoinfected patients
- Indication for OLT: decompensated cirrhosis (19), HCC (2), fulminant (1)
- Overall survival: 85% in HIV-HBV, 100% in HBV (p=0,09)
 - 3 deaths due to causes unrelated to HBV
 - Persistent low replicating HBV-DNA in 6/7 patients with available HBV-DNA after OLT

Coffin, et al. Am J Transplant, 2010

Increasing screening in HIV patients

EPI-B studies, 2005, 2008, 2012 (AIDS 2007, J hepatol 2012, Submitted)

Can rapid tests increase screening efficacy?

Performance of 3 HBsAg rapid tests on capillar blood in the community¹

	Patients	AUC, [95% CI]	Se	Sp
Vikia® HBsAg	3956	0.98 [0.96 - 1.00]	96.5	99.9
Quick Profile [™] HBsAg	3950	0.95 [0.92 - 0.98]	90.5	99.7
Determine ^{⊺M} HBsAg	2478	0.97 [0.93 - 1.00]	93.6	100

 In African rural settings², performance of Determine test: Se=96% / Sp=100%
 Are rapid tests reliable in the HIV settings? - YES³ → κ correlation coefficient = 1 / Se=100% and Sp=100% in study done in Liverpool on 300 sera from HIV+ patients from Malawi (CD4 = 175)

Non invasive Fibrosis Evaluation: still challenging

→ 134 patients, 11 scores tested¹

scores	AUC	Cut-offs	(HCV)
Fibrometer [®] -≤ F2 - ≤ F3 - F4	0,74 0,83 0,89	0,46 0,69 0,83	0,5
Fibrotest [®] -≤ F2 - ≤ F3 - F4	0,77 0,80 0,87	0,43 0,59 0,74	0,49 0,59 0,75

→ 57 patients, elastmetry²

¹Bottero J. J Hepatol, 2009. ²Miailhes P. J Viral Hepat 2010

Treatment algorithms

Assessment of Treatment Indications for HBV in Persons with HBV/HIV Co-infection

Note: In persons with significant liver fibrosis (F2-F4), anti-HBV treatment might be considered even when serum HBV-DNA is below 2000 IU/mL and liver enzymes are not elevated.

EACS Guidelines Nov 2013

Treatment efficacy with TDF

102 patients (61% HBeAg+) with a median 5 years of follow-up

Figure 1. Kaplan-Meier curve for the cumulative probabilities of achieving virologic response, defined as HBV-DNA levels less than 20 IU/mL, for HBeAg-positive (n = 67) and HBeAg-negative (n = 15) HIV/HBV with patients with detectable HBV DNA at baseline (n = 82).

 120 patients (63% HBeAg +) with a minimum of 1 year of TDF and a median 6 years (3 – 8) of follow-up

De Vries Suijs T, et al. Gastroenterol 2010

Boyd, et al. Submitted

Role of Peg-IFN in TDF-treated patients

EMVIPEG: pilot study evaluating the addition of Peg-IFN to TDF in HIV-HBV patients¹

	On Peg-interferon + tenofovir + emtricitabine				On tenofovir + emtricitabine
Variables	W0 N=51	W12 N=50	W24 N=50	W48 N=50	W72 N=50
Patients with ALT < ULN ¹ : [n(%)]	39 (76)	26 (52)	26 (52)	34 (68)	43 (86)
HBV DNA >100 copies/ml: [n(%)]	20 (39)	19 (38)	10 (20)	5 (10)	6 (12)
HBeAg loss: [n (%)] ³	2 (4) 2	2 (4)	8 (16)	10 (20)	10 (20)
Anti-HBe seroconversion: [n (%)] ⁴	0	3 (6)	5 (10)	4 (8)	4 (8)
HBV sustained response : [n (%)]	0	NA	NA	NA	4 (8)
HBsAg loss [n(%)]	0				2 (4)
% CD4 : [médian(range)]	29 (11-45.3)	32 (11-46)	34 (10-51)	31.5 (12-49.0)	31.8 (14-47.2)
CD4 cell count : [médian (range)]	506 (175-1316)	369 (139-955)	368 (102-879)	372 (149-834)	516 (176-1292)
HIV RNA <50 copies/ml: [n (%)]	49 (96)	45 (90)	49 (98)	45 (90)	44(88)

No benefit of adding Peg-IFN regarding antiHBe seroconversion or HBs loss rate

1 Miailhes P, et al. CROI 2013

Persistent HBV replication

- **MAGNITUDE:** 5 to 10% of patients on TDF after > 3 years^{1,2}
- **PATTERNS:** blips, persistent viremia, rebound^{2,3}
- CAUSES: suboptimal adherence: YES^{2,3}
 - suboptimal treatment: NO⁴ (maybe in pre-treated patients)³
 - resistant strains: NO^{2,3,5}
 - failing immunological control?
- IMPACT: no Hbe or HBs loss in patients w/ persistent replication, no clinical event⁶
 - **MANAGEMENT:** confliting results regarding addition of ETV^{7,8,9}
 - check adherence¹⁰
 - stay on same therapy if regular decrease > 1 year¹⁰
 - add ETV only long-term stagnation of HBV-DNA ¹⁰
 - reconsider after 6 months¹⁰

¹de Vriis Sluijt 2010. ²Boyd 2009. ³Matthews 2013. ⁴Matthews 2008. ⁵Childs, AIDS 2013. ⁶Boyd *submitted*. ⁷Luetkemeyer, JAIDS 2011. ⁸Ratcliffe, AIDS 2011. ⁹Mikulska, J Med Virol 2012. ¹⁰EACS/EASL Guidelines 2012 and 2013

Long term tolerance of TDF

Figure 1: MDRD clearance over time

- 240 patients with a 3year-time follow-up, normal eGFR at baseline^{1:} no difference with other NUC
 Available data on renal and bone impairment over time in HIV-infected patients on long-term use of TDF (> 6 years)
- TDF- associated tubular nephropathy very rarely described in HBV-infected patients^{2,3}

MANAGEMENT:

- Check the imputability of TDF in alteration of renal Cl. (send to kidney specialist and biopsy)
- Decrease TDF dosage(1cp/2-3 days)
- No place for ADV
- Add probenecide ?
- Switch for ETV if no previous exposure to 3TC?

1Lacombe K, EASL 2008. 2Si-Ahmed SN, Antiviral Res 2011. 3Gish RG, Clin Gastroenterol Hepatol 2012

Emergence of treatment and immune escape mutants

% of patients with incident mutations

	TDF±LAM/FTC	numerous switchs
Groups of mutations	% (<i>n</i>)	% (n)
Alkyl phosphonate-associated <i>pol</i> -gene	(<i>n</i> =49)	(<i>n</i> =15)
	6.1%	6.7%
Immune-associated S-gene	(<i>n=</i> 73)	(<i>n</i> =18)
	1.4%	5.6%
L-nucleoside-associated pol-	(<i>n</i> =64)	(<i>n</i> =15)
gene/antiviral-associated S-gene	9.4%	33.3%

Emergence of antiviral-associated S mutations conferring resistance to current NUCs and potential vaccine escape strains¹

Lacombe K, Hepatology 2013

Prevalence of HDV markers in HIV

Manesis EK. EASL Monothematic Conference Delta Hepatitis. Sept 2010. Istanbul

Fig. 1. Prevalence of antihepatitis delta virus antibody in serum hepatitis B virus surface antigen-positive patients in EuroSIDA.

Soriano V. et al. AIDS 2011

\rightarrow P(HDV/HIV-HBV) = x2 (P(HDV/HBV)

Increased fibrosis in HDV-infected patients

12 OR = 7,73 OR = 8,54 10 8 6 4 OR = 1,76**OR** = 1 2 0 **HIV-HBV HIV-HBV-HIV-HBV-HIV-HBV-**HCV **HDV HCV-HDV**

Risk of liver fibrosis \geq F3

Predictors of clinical outcomes in HDVinfected patients, EUROSIDA

Clinical outcomes	IRR (95%CI)
Progression to death	2,23 (1,17-4,28)
Progression to liver related events	4,44 (1,46-13,55)
Progression to AIDS	1,60 (0,56-4,56)
Progression to AIDS or death	2,17 (1,22-3,87)

Lacombe K, et al. AIDS 2007

Soriano V, et al. AIDS 2011

Treatment options for HDV in HIV

- Persistent HDV-DNA replication in all 17 patients (including those treated with Peg-IFN + TDF after Peg-IFN interruption
- Sequential treatment with Peg-IFN ? (normalisation of transaminases, stabilization of liver fibrosis?)

Boyd A, et al. AIDS Res Hum Retroviruses 2013

HBs loss with current treatment

Studies	Duration of F/U	Hbe loss	HBs loss
Treatment experienced			
De Vriis Sluijt, 2010 (n=102)	5 years	46%	12%
Maylin, 2013 (n=143, Hbe+=67%)	3 years	43%	4%
Treatment naive			
Matthews, 2013 (n=47, Hbe+=57%)	2 years	48%	13%

Maylin S. AIDS 2012

→ HBs loss is low with NUCs, HBs seroconversion is even lower...

New therapeutic strategies

Drugs targeting virus or host¹

New targets for « functional cure »²

¹Zoulim F, Expert Opin Emerg Drugs 2013. ²Zoulim F. Antivir Res 2012

ACKNOWLEDGMENTS

Pierre-Marie Girard, Jürgen Rockstroh, Sanjay Bhagani, Fabien Zoulim, Serge Eholié, Maud Lemoine, Anders Boyd, Julie Bottero, Hayette Rougier, Patrick Miailhes, clinical teams of Biliver – French HIV-HBV Cohort, the patients

