Fifth Annual BHIVA Conference for the Management of HIV/ Hepatitis Co-infection

Professor David Back

University of Liverpool

Wednesday 3 October 2012, One Great George Street Conference Centre, London

Fifth Annual BHIVA Conference for the Management of HIV/ Hepatitis Co-infection

Professor David Back University of Liverpool

	COMPETING INTEREST OF FINANCIAL VALUE > £1,000:
Speaker Name	Statement
David Back	Acts in a Consultancy capacity for Merck, Janssen and as a speaker at company sponsored events for Merck, Janssen, Bristol Myers Squibb and Gilead. He has also received educational grants from Merck, Janssen, Bristol Myers Squibb, Gilead, ViiV Healthcare, Boehringer Ingelheim and Roche.
Date	22 September 2012

Slide 3

Drug-Drug Interactions with new HCV Drugs

David Back

University of Liverpool

October 2012

Disclosures

Speakers Bureau: Janssen, Merck, BMS, Boehringer Ingelheim.

Grant Support: Janssen, Merck, BMS, Boehringer Ingelheim, Roche, Vertex, Gilead.

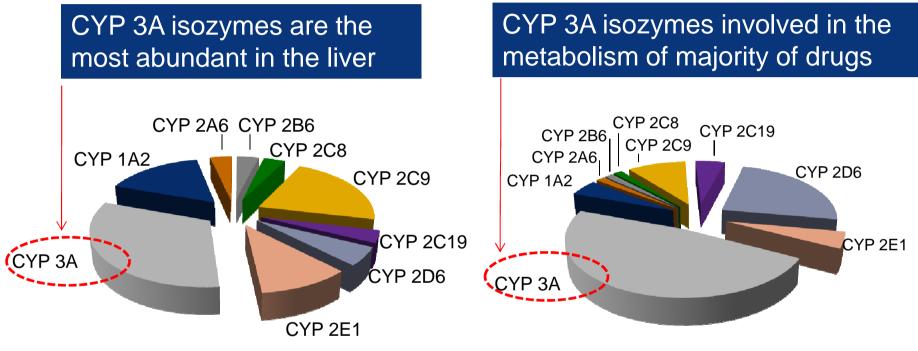
Interactions with the new HepC DAAs are challenging!

- Number of known interactions
- Number of potential interactions (based on metabolic profile)
- Magnitude of the interactions
- Applying data from Healthy Volunteer studies to HCV patients

Drug Interactions pre-DAAs

- ie involving pegylated interferon/ribavirin were limited.
- Ribavirin Abacavir (efficacy) and ribavirin zidovudine (toxicity) caused some concern in co-infected patients

Ribavirin and Abacavir drug interaction in HIV-HCV coinfected patients: fact or fiction?


AIDS 2012, Vol 00 No 00

Caroline Solas^{a,b}, Elodie Pambrun^{c,d}, Maria Winnock^{c,d}, Dominique Salmon^e, Isabelle Poizot-Martin^f, Stéphanie Dominguez^g, Firouzé Bani-Sadr^h, Jacques Izopetⁱ, Rodolphe Garraffo^j and Gilles Peytavin^k for The ANRS CO-13 HEPAVIH Study Group

- However the <u>DAAs</u> have increased potential for <u>DDIs</u>
- The focus is CYP3A4-mediated interactions but this is not the only mechanism

DDI: drug-drug interaction; HCV: hepatitis C virus

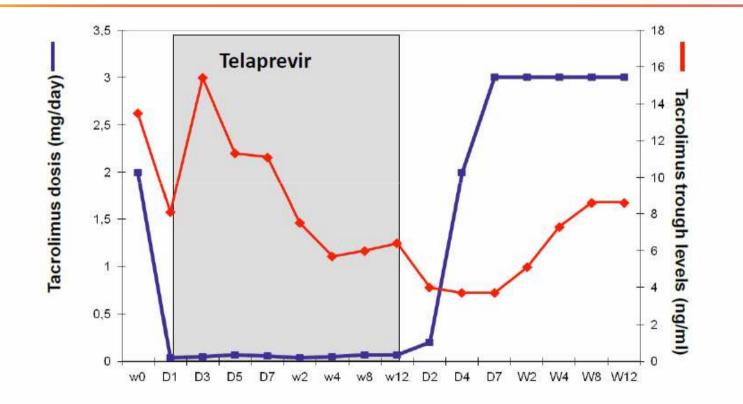
Telaprevir and Boceprevir are metabolised by and strongly inhibit CYP3A4

Proportion of total CYP enzymes Proportion of drugs that are present in human liver

substrates for major CYP enzymes

Boceprevir also metabolised by Aldo-Keto Reductase (AKR)

Telaprevir & Boceprevir <u>increase</u> exposure to CYP3A substrates: *Perpetrator*


Drug	TVR effect on the AUC (exposure)	BOC effect on the AUC (exposure)
Cyclosporine A	4.6-fc Manageat	ole crease
Tacrolimus	70-ftelore challenging	g to manage prease
Midazolam	3.4-fold increase (i.v) 9-fold ii <mark>CI</mark> al)	6.3-fc Cl (oral)
Atorvastatin	7.9-fc CI	2.3-Dose reduce
Sildenafil	Dose reduce	Dose reduce

Garg V, et al. Heptatology 2011:54:20–27; Garg V, et al. J Clin Pharmacol 2012 ; Lee JE, et al. Antimicrob Agents Chemother 2011;55:4569–74; Telaprevir EU SmPC; Hulskotte EGJ et al HEPDart 2011; Abs 122 and Abs 123; Kessara C et al, CROI 2011, Abs 118; Boceprevir EU SmPC

The Viral Hepatitis Congress 2012

7 – 9 September 2012 at The Johann Wolfgang Goethe University, Frankfurt, Germany

- Suggested starting dose of TAC would be 0.2-0.5 mg/d every 2-3 days and close monitoring
- Immediately after stopping TPV TAC should be started at least same pre-treatment dose

In most cases there are no DDI data so we need to understand metabolic profiles of drugs in the regimen to understand the potential for interaction

Interaction of Anxiolytics with TVR & BOC

Drug	Major Clearance Pathway	Effect of TVR	Effect of BOC
Midazolam	CYP3A4		
Triazolam	CYP3A4	•	•
Alprazolam	CYP3A4		\bigcirc
Diazepam	CYP2C19; CYP3A4	\bigcirc	\bigcirc
Estazolam	CYP3A4	\bigcirc	\bigcirc
Flurazepam	CYP mediated	\bigcirc	\bigcirc
Zolpidem	CYP3A4>2C9,1A2,2D6		\bigcirc
Zoplicone	CYP3A4>>2C8	0	0
Lorazepam	Glucuronidation		
Oxazepam	Glucuronidation		

D = Data from study

Interaction of Lipid Lowering Agents with TVR & BOC

Drug	Major Clearance Pathway	Effect of TVR	Effect of BOC
Atorvastatin	CYP3A4, OATP1B1		
Lovastatin	CYP3A4	•	
Simvastatin	CYP3A4	•	
Pravastatin	OATP1B1/3	\bigcirc	C
Rosuvastatin	CYP2C9 (minor); OATP1B1	\bigcirc	\bigcirc

Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters

Annett Kunze^a, Jörg Huwyler^b, Gian Camenisch^a, Heike Gutmann^{a,*}

^a Division of Drug Metabolism and Pharmacokinetics, Drug–Drug Interactions Section, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland ^b Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland

Biochemical Pharmacology 84 (2012) 1096-1102

Interaction of Lipid Lowering Agents with TVR & BOC

Drug	Major Clearance Pathway	Effect of TVR	Effect of BOC
Atorvastatin	CYP3A4, OATP1B1		
Lovastatin	CYP3A4		
Simvastatin	CYP3A4		
Pravastatin	OATP1B1/3	\bigcirc	
Rosuvastatin	CYP2C9 (minor); OATP1B1	\bigcirc	\bigcirc
Fluvastatin	CYPs(Multiple); OATP1B1/ 2B1		
Pitavastatin (US)	CYP2C9 (minor) UGT1A3; OATP1A2/1B3		
Gemfibrozil	Enzymes unknown		

D = Data from study

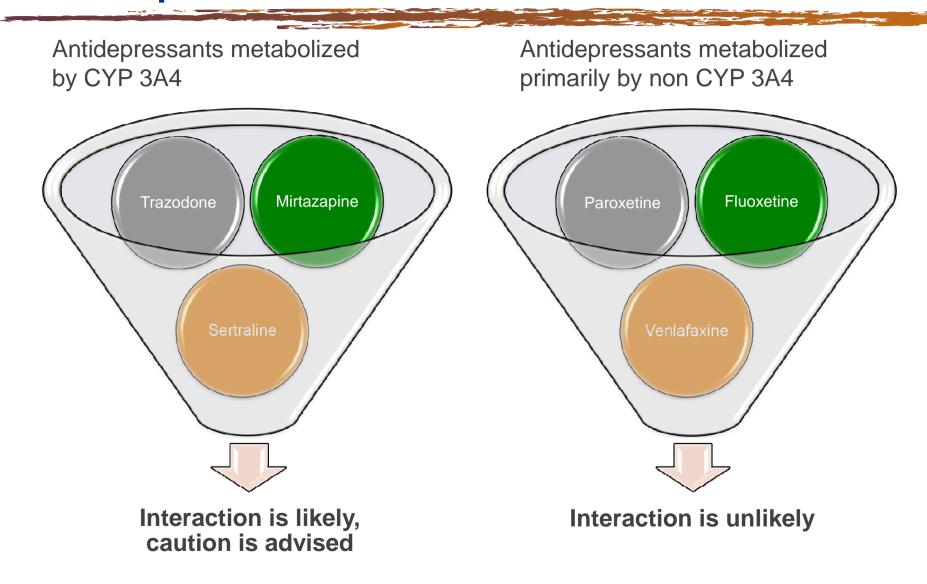
Contraindication or Caution when co-administering statins with CYP3A4 mediated metabolism...but can you avoid using a statin during DAA

treatment?

If Metabolism involves just CYP3A4 – co-med levels will <u>increase.</u>

But if other additional metabolic pathways – co-med levels <u>could decrease</u>.

Also note <u>other interaction</u> <u>mechanisms.</u>


Telaprevir & Boceprevir <u>decrease</u> exposure of other CYP-metabolised drugs:

Perpetrator

	TVR effect	BOC effect
Co-medication	AUC	AUC
Escitalopram (SSRI) <i>Metabolised by</i> CYP2C19 & CYP3A4	↓ 35%	↓ 21%

- Mechanism: Not clearly determined but INDUCTION of CYP2C19?
- Doses may need to be increased when combined with telaprevir
- Dose adjustment not anticipated with boceprevir.

Other antidepressants that have not been studied with telaprevir

Slide 17

HIV-HCV co-infection

Telaprevir & Boceprevir decrease exposure of HIV protease inhibitors *Perpetrator*

Boosted PI	% Change in AUC of Boosted PI by BOC Boosted PI by TVF		
Atazanavir/r	↓ 35%	↑17%	
Lopinavir/r	↓ 34%	\longleftrightarrow	
Darunavir/r	↓ 44%	↓ 32%	

Mechanism?

- > CYP3A4 is inhibited by ritonavir; induction of another pathway
- Displacement from protein binding and increased clearance

Telaprevir and boceprevir are also *Victims* of drug interactions: HIV drugs

	Effect on Boceprevir	Effect on Telaprevir
Co-medication	AUC	AUC
Efavirenz (600 mg qd)	↓ 19% (Cmin 44%)	↓ 26%
Atazanavir/r	\longleftrightarrow	↓ 20%
Darunavir/r	↓ 32%	↓ 35%
Lopinavir/r	↓ 45%	↓ 54%

Potential protein displacement interaction with darunavir and telaprevir

 Summation of *in vivo* and *in vitro* data consistent with plasma protein displacement between TVR and DRV but clinical confirmation necessary

Compound	Parameter	Alone	Combination	Trend
Telaprevir	C _{min} (ng/mL)	1835	1237	↓ Total
Darunavir	C _{min} (ng/mL)	2964	1794	concentration
Telaprevir	% Unbound	12.2	15.6	*Eroo frontion
Darunavir	% Unbound	9.25	15.2	↑Free fraction
Telaprevir	Free C _p (ng/mL)	224	193	~ Free
Darunavir	Free C _p (ng/mL)	274.2	272.7	concentration

Potential protein displacement interaction with darunavir and telaprevir

 Summation of *in vivo* and *in vitro* data consistent with plasma protein displacement between TVR and DRV but clinical confirmation necessary

Compound	Parameter	Alone	Combination	Trend
Telaprevir	C _{min} (ng/mL)	1835	1237	↓ Total
Darunavir	C _{min} (ng/mL)	2964	1794	concentration
Telaprevir	% Unbound	12.2	15.6	↓Eroo fraction
Darunavir	% Unbound	9.25	15.2	↑Free fraction
Telaprevir	Free C _p (ng/mL)	224	193	~ Free
Darunavir	Free C _p (ng/mL)	274.2	272.7	concentration

Potential protein displacement interaction with darunavir and telaprevir

 Summation of *in vivo* and *in vitro* data consistent with plasma protein displacement between TVR and DRV but clinical confirmation necessary

Compound	Parameter	Alone	Combination	Trend
Telaprevir	C _{min} (ng/mL)	1835	1237	↓ Total
Darunavir	C _{min} (ng/mL)	2964	1794	concentration
Telaprevir	% Unbound	12.2	15.6	↑Free fraction
Darunavir	% Unbound	9.25	15.2	
Telaprevir	Free C _p (ng/mL)	224	193	~ Free
Darunavir	Free C _p (ng/mL)	274.2	272.7	concentration

Telaprevir: Summary of DDIs with HIV antiretrovirals

HIV antiretroviral	Recommendation
Studies completed	
Atazanavir/r	Clinical and laboratory monitoring for hyperbilirubinemia is recommended
Darunavir/r Fosamprenavir/r Lopinavir/r	Not recommended
Efavirenz	TVR dose increase necessary (1125 mg q8h)
Etravirine and rilpivirine	No dose adjustment required
Raltegravir	No dose adjustment required
Tenofovir	Increased clinical and laboratory monitoring is warranted
Studies not completed	
Abacavir/zidovudine	An effect of telaprevir on UDP-glucuronyltransferases cannot be ruled out and may affect the plasma concentrations of abacavir or zidovudine (not studied)

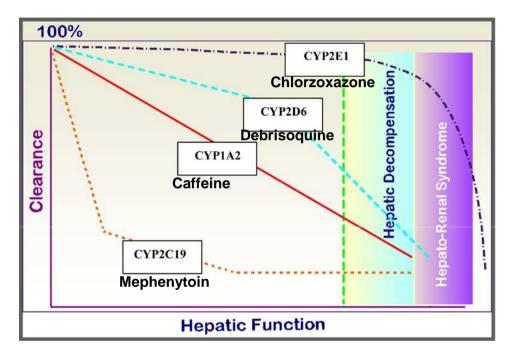
Boceprevir: Summary of DDIs with HIV antiretrovirals

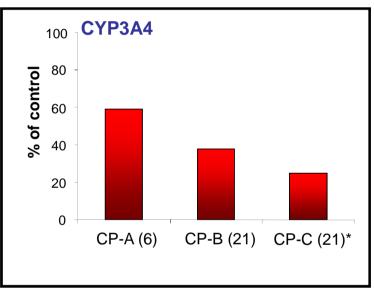
HIV antiretroviral	Recommendation		
Studies completed			
Atazanavir/r Darunavir/r Lopinavir/r	Not recommended		
Efavirenz	Reduction in boceprevir levels; clinical outcome not directly assessed		
Etravirine	No dose adjustment required*		
Raltegravir (non CYP)	No dose adjustment required**		
Tenofovir	No change in TFV AUC but Cmax increased by 32%. No dose adjustment but clinical/laboratory monitoring warranted		

> All the PK Interaction studies are in HEALTHY VOLUNTEERS

So.....

- The interactions with HIV PIs (in healthy volunteers) are: unexpected, and difficult to explain.
- Although total concentrations are reduced the 'free' concentrations may be less affected – need more data!
- Is the magnitude of the interaction different in HCV patients?

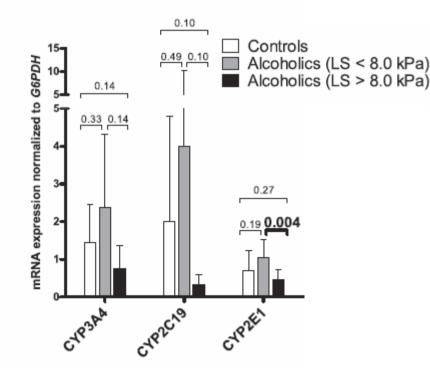

Most DDI studies are in Healthy Subjects: Physiological Changes (vs. healthy volunteers)


Parameter	HCV-infected
Albumin	↓* 1
α1-acid glycoprotein	1↓ 3
Gastric pH	↑4
Cytokines	↑ 6
Cytochrome P450's	\downarrow^{5}

* Magnitude of effect dependent on stage of liver involvement † Also **hemodynamic** changes with hepatic impairment

¹ Nagao Y & Sata M. *Virology Journal* 2010; **7**: 375; ² Monga HK *et al. Clin Infect Dis* 2001; **33**: 240-7; ³ Ozeki T *et al. Br J Exp Path* 1988; **69**: 589-95; ⁴ Nam YJ *et al. Korean J Hepatol* 2004; **10**: 216-22; ⁵ Frye RF *et al. Clinical Pharmacol Ther* 2006; **80**: 235-45; ⁶Huang et al *Clin Pharmacol Ther* 2010; 87: 32-36

Differences in CYP enzymes in patients with hepatic impairment



Model of hepatic dysfunction and implications for clearance of drugs predominantly metabolized by CYP pathway in liver. Study in healthy volunteers and patients with liver disease

Association of Liver Stiffness with Hepatic Expression of Pharmacokinetically Important Genes in Alcoholic Liver Disease

Dirk Theile, Walter Emil Haefeli, Helmut Karl Seitz, Gunda Millonig, Johanna Weiss, and Sebastian Mueller

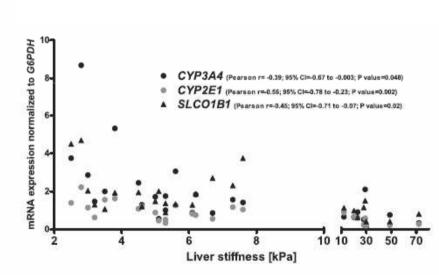
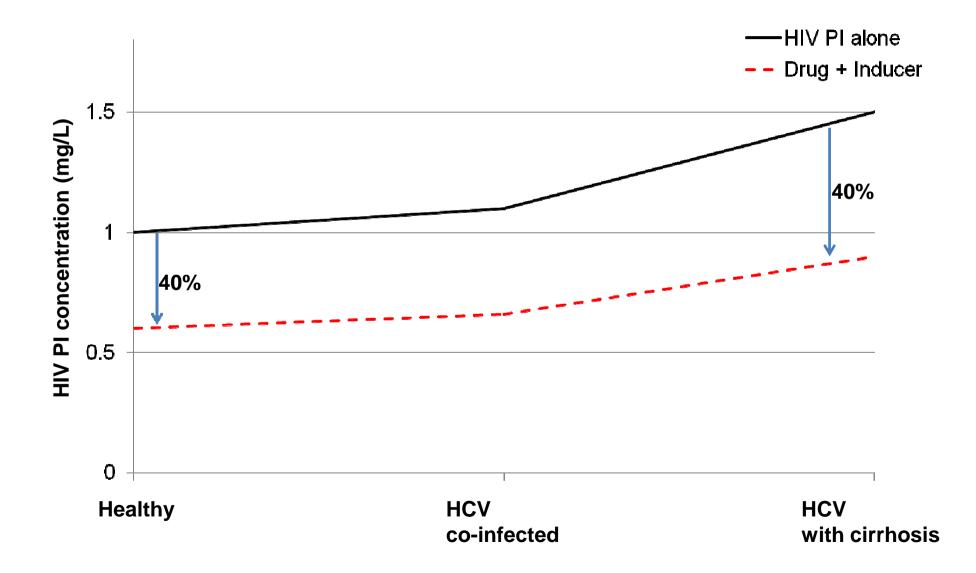



Fig. 2. Correlation of liver stiffness evaluated by transient elastography with hepatic mRNA expression of *CYP3A4* (black circles), *CYP2E1* (gray circles), and *SLCO1B1* (black triangles) among all alcoholics evaluated.

Potential Impact of a drug-drug interaction on healthy volunteers and HCV patients

Correspondence

AIDS 2012, 26:1845-1850

HIV protease inhibitors in combination with boceprevir: are drug-drug interactions the same for all patients?

Patient 1.

- On darunavir/r 800/100 mg QD monotherapy
- Liver cirrhosis (liver stiffness 34kPa)
- DRV concentration at wk 5 of HCV therapy with BOC 3777 ng/ml (normal range)

Patient 2.

- > On fos-amprenavir/r 700/100 mg BID containing regimen
- Liver cirrhosis (liver stiffness 32kPa)
- FPV concentration at wk 8 of HCV therapy with BOC 1699 ng/ml (normal range)

Carolynne Schwarze-Zander and Jürgen K. Rockstroh, Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.

What about the second generation of drugs?

Drug Interactions with TMC435 (Simeprevir)

Drug	Effect <u>of</u> TMC435	Effect of Drug on TMC435
Methadone (CYP3A4 & CYP2B6)	No effect	na
Escitalopram <i>(CYP2C19)</i>	No effect	na
Efavirenz <i>(CYP2B6)</i>	na	70%
Rilpivirine (CYP3A4)	↓ 12%	No effect
Raltegravir <i>(UGT</i> s)	No effect	↓ 11%

Na = not assessed

Overall weaker inhibitory effect on CYP enzymes

Simmen K et al Int Liver Congress Hong Kong 2008; Abs 507. Beumont-Mauviel M et al AASLD 2011; Abs 1353 & 1354

Drug Interactions with BI201355 (Faldaprevir)

Drug	Effect of BI201335 AUC GMR
Oral Midazolam <i>(CYP3A4)</i>	2.92
Omeprazole <i>(CYP2C19)</i>	1.58
Efavirenz <i>(CYP2B6)</i>	1.16
S-Warfarin <i>(CYP2C9)</i>	1.29

Study in healthy volunteers (n=14-24); 240 mg BID BI201335.

Sabo JP et al ICAAC 2012 Abs A-1248

What about herbals, drugs of abuse and legal highs?

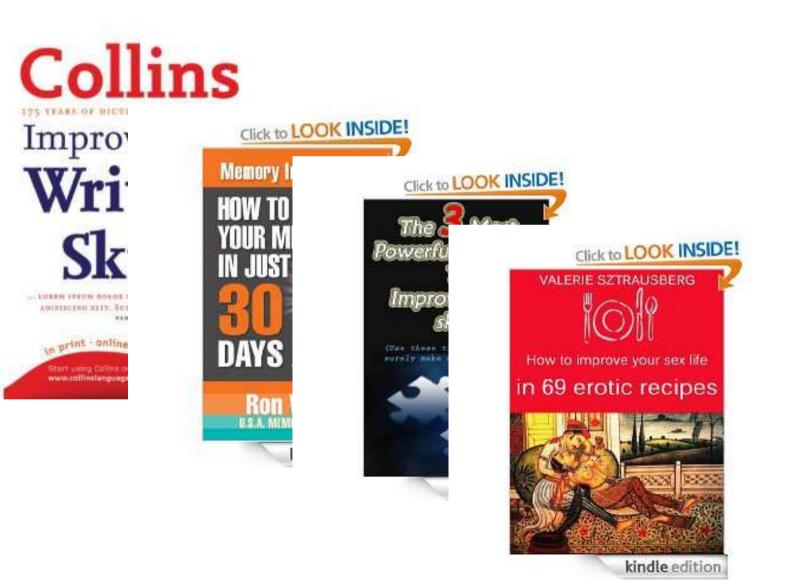
- Heroin, dihydrocodeine, oxycodone
- Cannabis and synthetic cannabinoids
- Cocaine, crack cocaine
- Amphetamine, ecstasy, methamphetamine, GHB and GBL
- LSD, ketamine, phencyclidine,
- Mephedrone, BZP (piperazines), MDPV, 2 DPMP, benzo fury
- Butane, nitrites
- Anabolic steroids

DDI management: a stepwise approach

- ✓ **Be vigilant for DDIs** when starting PI-based therapy
- Check all patient's concomitant drugs (prescribed/OTC) and herbal products
- Consult the SmPCs of Pls
- Consult on-line resources and a pharmacist/ pharmacologist to seek guidance

Slide 36

Awareness


Resources

Management

There is always room for improvement

News & Archive

www.hep-druginteractions.org

Interaction Charts

About Us Pha

Pharmacology Resources

DRUG INTERACTION CHARTS

ces Links

Meetings Feedback

C Home

LATEST ARTICLES

Review - New drugs for HCV in HIV/HCV co-infection.

Review - HCV treatment and mental health.

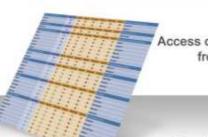
Drug Interactions - Peginterferon and Cytochrome P450.

Drug Interactions - Telaprevir and ketoconazole, rifampicin or efavirenz.

Meeting Report - 7th Hepatitis Pharmacology Workshop. Cambridge, USA.

Drug Interactions - Boceprevir and ciclosporin or tacrolimus.

Click here for previous news items


SITE UPDATES

New comedications added to Analagesics, Antidepressants & Anxiolytics Hypnotics/Sedatives, Three comedication classes have been expanded to include 11 additional drugs – details are giv...

Further additions to the comedication list The latest additions to the comedication list have recently been uploaded to the database and all ve...

>>more

>>more

Access our comprehensive, user-friendly, free, drug interaction charts

CLICK HERE

Providing clinically useful, reliable, up-to-date, evidence-based information

INTERACTION CHARTS AT YOUR FINGERTIPS

HEP iChart - an interaction app for mobile devices

Available free for Apple and Android devices (search for **HEP iChart** in the App Store or Google Play).

This is an "offline" app that is downloaded to your device (~350 kb). An internet connection is not required to use the app, but is needed for downloading updates.

NOW OPTIMISED FOR iPADS

ASSOCIATED SITES

www.hiv-druginteractions.org

A comprehensive HIV drug-drug interaction resource, freely available to healthcare workers, patients and researchers.

EXTERNAL LINKS

Viral Hepatitis Congress

Liver Foundation German Liver Foundation

FOLLOW US ON TWITTER

For the latest additions and updates to the site, click the button to follow hepinteractions on Twitter.

EMAIL UPDATES

Click here to register for website updates.

Please add noreply@hep-druginteractions.org and hivgroup@liv.ac.uk to your address book to assist in uninterrupted delivery and check your SPAM or BULK folder to ensure emails are not being lost.

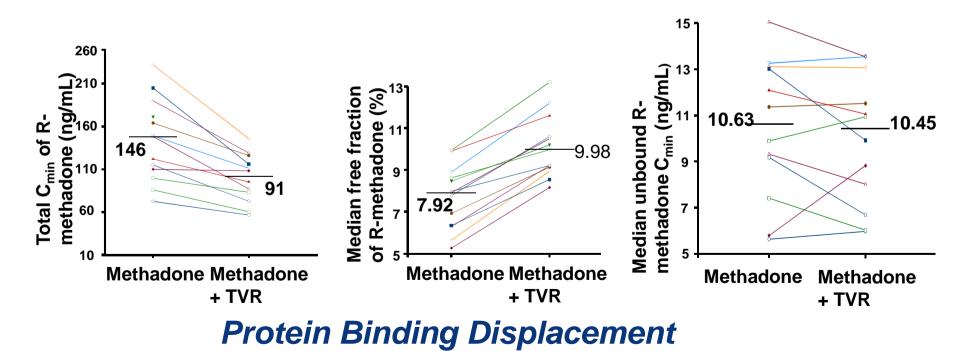
Sponsors J

S MSD

VERTEX

Terms & Conditions

Slide 39


THANK YOU!

Interaction with Methadone (metabolised by CYP3A4, CYP2B6) : a further complication:

- During telaprevir co-administration vs methadone alone:
 - Total C_{min} of R-methadone <u>reduced</u> by 31%
 - Free fraction of R-methadone increased by 26%
 - <u>No change</u> in the unbound (effective) concentration of R-methadone

Interaction of Antidepressants with TVR & BOC

Antidepressant	Major Clearance Pathway	Effect of TVR	Effect of BOC
SSRI			
Escitalopram	CYP2C19, 3A4, 2D6; weak inhibitor CYP2D6	● ↓35%	● ↓21%
Citalopram	CYP2C19, 3A4, 2D6; weak inhibitor CYP2D6	● ↓ ? QT	● 2 QT
Fluvoxamine	CYP2D6>other CYPs; FLUV <u>inhibits</u> CYP1A2; 2C; 3A4 (moderate).	● ?↑TVR	● ?↑BOC
Fluoxetine	CYP2D6, 2C9 > 3A4; FLU inhibits CYP2D6	• + •	• + •
Paroxetine	CYP2D6 and other CYPs; PAR <u>inhibits</u> CYP2D6, P-gp	● ? ↑ TVR	● ? ↑ BOC
Sertraline	CYP2B6>2C9, 2C19, 2D6, 3A4; SER <u>inhibits</u> CYP2D6, P-gp	●	● ↓/↑ ? ↑ BOC
SNRI			
Duloxetine	CYP2D6, 1A2, weak inhibitor CYP2D6	• * •	• + •
Venlafaxine	CYP2D6>3A4; VEN a weak inhibitor of CYP2D6	● ↔/↑	● ↔/↑
TeCA			
Mirtazapine	CYP3A4 , 2D6 > CYP1A2	• 1	● ↑
Others			
Bupropion	CYP2B6>> 2C19. BUP inhibits 2D6 (moderate)	● ↔	● ↔
Trazodone	СҮРЗА4	•	• ↑

From <u>www.hep-</u> <u>druginteractions.org</u> & SPcs of individual drugs

Interaction of Analgesics with TVR & BOC

	Major Clearance Pathway	Effect of TVR	Effect of BOC
Alfentanil	СҮРЗА4	● ↑	● ↑
Buprenorphine	CYP3A4> glucuronidation Bup <u>inhibits</u> 3A4 & 2D6	● ↔ AUC	● ↑ 20%
Codeine	Glucuronidation> CYP2D6 (to morphine) & CYP3A4 (to norcodeine)	$\bullet \leftrightarrow$	● ↔
Diamorphine	Deacetylation to morphine; then glucuronidation	$\bullet \leftrightarrow$	$\bullet \leftrightarrow$
Fentanyl	СҮРЗА4	● ↑	● ↑
Methadone	CYP3A4 & CYP2B6 > 2D6, 2C19	↓ 31% (Total) ● ↔ Free)	↓ 16% (Total) ●
Morphine	Glucuronidation >>CYP3A4 (to normorphine) > 2C8	$\bullet \leftrightarrow$	
Pethidine	CYP2B6>3A4	$\bullet \leftrightarrow$	$\bullet \leftrightarrow$
Tramadol	CYP3A4, CYP2B6 > 2D6	● ↑?	● ↑ ? From ww

From <u>www.hep-</u> <u>druginteractions.org</u> & SPcs of individual drugs