Hepatitis C: Short duration DAA therapy, DAA resistance

Graham Cooke Imperial College, London

14th June, 2016

HEPATOLOGY HIGHLIGHTS

Speaker Name	Statement
Graham Cooke	Consultancy for Gilead, MSD, BI, BMS, Janssen, WHO Investigator on studies sponsored by Gilead, Janssen, BMS
Date	June 2016

WEDNESDAY 15 JUNE 2016 1 Wimpole Street • London

Viral Hepatitis 7th leading cause of death

Mortality rate (per 100,000 py)

Proportion attributable to each virus

The area of each pie is proportional to that region's hepatitisattributable mortality rate. The size of each wedge represents the proportion of that moratlity attributable to a given virus

hepatitis_a_pr
hepatitis_b_pr
hepatitis_c_pr
hepatitis e pr

(Stanaway et al Lancet in press)

Bucking the trend of infectious diseases

	1990		2013
1	Ischemic heart disease		Ischemic heart disease
2	Cerebrovascular disease		Cerebrovascular disease
3	Lower respiratory infections	~ /	COPD
4	Diarrheal diseases		Lower respiratory infection:
5	COPD	\prec ,	Alzheimer disease
6	Tuberculosis	$\backslash $	Lung cancer
7	Neonatal preterm birth		Viral hepatitis
8	Road injuries		Road injuries
9	Lung cancer		HIV/AIDS
10	Viral hepatitis		Diabetes

Stanaway et al (2015)

Hepatitis has overtaken other major infectious diseases

(GBD 2015 in preparation)

Co-infection in the World

~3m HCV/HIV co-infected

Platt et al 2016 LID

So what does it tell us about viral hepatitis?

		Vaccine	Treatment	
Hepatit	is A	Yes	No	
Hepatit	is E	Yes	(Yes)	
Hepatit	is B	Yes	Yes	
Hepatit	is C	No	Yes	

 Treatment is particularly important as a tool to control HCV

It's about cure = SVR

cccDNA = covalently closed circular DNA

1. Pawlotsky JM. J Hepatol 2006;44:S10-S13; 2. Siliciano JD, Siliciano RF. J Antimicrob Chemother 2004;54:6-9;

3. Lucas GM. J Antimicrob Chemother 2005;55:413-416

Why do we want to achieve SVR? All-cause mortality

Simmons et al CID 2015

Precision HCV Medicine before "The Storm"

We already (variably) use precision/stratified medicine

Theragnostics and stratification

Anticipating the storm: MRC funding stratified medicine consortia 2013

- Genuinely national consortia that could be outward facing to pharma
- Diseases with strong pipeline of high cost medication
- Required non-cancerous diseases with biological evidence for stratification

How did we achieve SVR back in June 2015 (UK)

G1 only Boceprevir Telaprevir

G1/4 Simeprevir

Pegylated interferon

Once weekly subcutaneous Immune activation

Oral Antiviral

Ribavirin

Back in 2015: Virus? Q80K and simeprevir

Q80K present in 34% of GT1a patients. No benefit of simeprevir if Q80K positive

Jacobson I, et al. AASLD 2013. Abstract 1122.

Back in 2015: Host genetics? IFNλ3 (IL28) and IFNλ4

Prokunina-Olsson NG (2013)

Hepatitis C: stratification in interferon era

- Demographic
 - Age
 - Male gender
 - Ethnicity
- Clinical
 - Fibrosis
 - BMI
 - HIV
- Host genetic
 IL28B/ IFNL4
- Viral
 - Viral resistance mutations
 - Genotype

 Response guided approaches

HCV genotypes still matter for now

HCV Genotypes in the UK

General UK population

HIV positive population

Source: PHE, HCV UK

How relevant is this with new treatments?

HCV lifecycle provides multiple targets for new drugs

1. Lindenbach BD & Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature 2005;436:933-938

Hepatitis C pipeline has been very busy: 2013

Drug development end 2014

Field is consolidating

Nucleotide/ nucleoside	Non-nucleoside	Protease Inh	NS5a
Sofosbuvir			
Sofosbuvir			Ledipasvir
Sofosbuvir		(GS-9857)	Velpatasvir
	Dasabuvir	Paritaprevir/R	Ombitasvir
		ABT-493	ABT-530
(MK-3682)		Grazoprevir	Elbasvir
(MK-3682)		Grazoprevir	MK8408

HCV Genotype 1 Treatment-Naïve Patients – improving SVRs

Adapted from Strader DB, et al. Hepatology 2004;39:1147-71. INCIVEK [PI]. Cambridge, MA: Vertex Pharmaceuticals; 2013. VICTRELIS [PI]. Whitehouse Station, NJ: Merck & Co; 2014. Jacobson I, et al. EASL 2013. Amsterdam. The Netherlands. Poster #1425. Manns M, et al. EASL 2013. Amsterdam. The Netherlands. Oral #1413. Lawitz E, et al. APASL 2013. Singapore. Oral #LB-02; Afdhal N, et al. N Engl J Med 2014; 2014 Apr 12; Kowdley K, et al. N Engl J Med 2014; 2014 Apr 11

Outcomes in HIV very similar to monoinfection

Resistance

1. Lindenbach BD & Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature 2005;436:933-938

Frequency at baseline

NS5A > NS3 protease > NS5B

Persistence

NS5A > (NS5B) > NS3 protease

Sarrazin et al (2016)

RAVs differ in frequency across genotype

Variant	Gene	1a	1b	2	3	4
Q30H/R/ E/L/T	NS5a	0.3%- 1.3%	-	-	90.4- 100% (Q30A)	50-100% (Q30R)
L31M	NS5a	0.9-1.8%	2.1-6.3%	74-85%	1%	92.5- 100%
Y93H	NS5a	<1.5%	3.8- 14.1%	-	1.3-8.3%	5-13%
Q80K	NS3	4.8-75%	0.5-1.2%	-	-	-
S282T	NS5B	-	-	-	-	-

Sarrazin et al (2016)

But have relatively limited impact on SVR12

Sarrazin et al (2014)

Genomics giving us greater understanding of host and virus

Pedergnana et al EASL 2016

Role for precision medicine if very good outcomes?

Subgroup	LDV-SOF, 12	2 Wk L	DV-SOF+RBV, 12	Wk
Overall		-		- ÷ -
Age				
<65 yr		-		-
≥65 yr				-
Sex				
Male				-+
Female		-		
Race				
Black				-
Nonblack		-+		- 🔶
Interferon eligibility status				
Eligible		-		- 🔶
Ineligible				-
HCV genotype				
la				
1Ь				-
Cirrhosis				
No		_		-+
Yes				-
HCV RNA				
<800,000 IU/ml				-
≥800,000 IU/ml				-
Body-mass index				
<30		-		-
≥30				-
Alanine aminotransferase				
≤1.5× ULN				
>1.5× ULN				-
IL28B genotype				
CC				_
Non-CC				-
	70 75 80 85 9	0 95 100 70	75 80 85 90 9	5 100

Afdhal NEJM 2014

Why not give everyone 12 weeks of next generation therapy?

- Money
- Nature of the therapy (adherence)

Recent case

- 45 year old male ex- IDU
- Chronic HCV (mild disease)
- Pre-existing paranoid ideation
- Baseline HCV VL 6000000 IU/I, genotype 1a
- Started OMB/PAR/DAS/RIT/RBV
- Stopped treatment early at 3/52
- Achieved SVR12

Could we have known before treatment started that 3/52 would be enough?

Money: Not just a UK problem

The cost of sofosbuvir for Hepatitis C per person, 12 weeks treatment

Hill & Cooke (Science 2014)

UK

Cost and convenience

Economist 2014

Restrictions for access to HCV innovative drugs 2° generation* Europe, Balkans, Switzerland

Other main details/restrictions

	German y	Drug users and prisoners are still excluded in real life. Some complexity with insurances
1	Portug al	Some drugs need special authorization
1	Poland	Some limitations for F0 patients
	France	All HIV/HCV coinfected + symptmatic cryoglobulimeia + Lymphoma can be treated w/o restrictions
	Croatia	Naive and G3 patients it is still P/R first line . F3 and F4 patients has priority
	Greece	F3 patients can be treated only if failed in the past
	Hungar y	Naive pt treated with PEG+RBV, tx and pt with IFN- contraindication treated with IFN-free independently
ſ	UK	From Beginning of March all G1s will get Harvoni or AbbVie 3D. Other GT waiting for Velpatasvir
1000	Bulgari	
	а	Some drugs approved, Defining the access criteria
	Spain	Extrahepatic manifestations and/ or high risk of infectivity with FO-F1
	Italy	Tx and pt with severe extra hepatic diseases can be treated independently fibrosis stage. F0-F2 can be treated with INF, RIBA and SIMPEREVIR
		All naïve pt. GT1,2,3 start with INF+RIBA. If negative w/e 4 continue.F3

Eston Latvia Lithuania Belarus Ukraine Czech Rep. Slovakia France Austria Tunisia Algeria Moroco

I. Gardini, on behalf of ELPA. Jenuary 2016

*Informations of the by ECPA members, and taken from presentations and internet research

England : Run rates

Monthly Patient numbers rising each quarter			C	onfirmed		Pr	ovisional		Pr	ovisional		Pr	ovisional		
ODN	Region	Prevalence ¹	(21 2000		G	22 2500		G	23 2650		G	4 2850		Annual Total
			Apr	May	Jun	Jly	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	
1. North East & Cumbria	North	4.4%	29	29	29	37	37	37	39	39	39	42	42	42	441
2. Greater Manchester & Eastern Cheshire	North	7.5%	50	50	50	62	62	62	66	66	66	71	71	71	747
3. Cheshire & Merseyside	North	4.5%	30	30	30	38	38	38	40	40	40	43	43	43	453
4. South Yorkshire	North	4.1%	27	27	27	34	34	34	36	36	36	39	39	39	408
5. Humberside and North Yorkshire	North	4.1%	27	27	27	34	34	34	36	36	36	39	39	39	408
6. West Yorkshire	North	7.0%	47	47	47	59	59	59	62	62	62	67	67	67	705
7. Lancashire and South Cumbria	North	4.3%	29	29	29	36	36	36	38	38	38	41	41	41	432
8. Leicester	Midlands	2.7%	18	18	18	22	22	22	24	24	24	26	26	26	270
9. Birmingham	Midlands	8.7%	58	58	58	73	73	73	77	77	77	83	83	83	873
10. Nottingham	Midlands	3.8%	26	26	26	32	32	32	34	34	34	36	36	36	384
11. Eastern Hepatitis Network	Midlands	6.0%	40	40	40	50	50	50	53	53	53	57	57	57	600
12. West London	London	4.8%	32	32	32	40	40	40	43	43	43	46	46	46	483
13. North Central London	London	7.5%	50	50	50	63	63	63	67	67	67	72	72	72	756
14. Barts	London	5.0%	33	33	33	42	42	42	44	44	44	48	48	48	501
15. South Thames Hepatitis Network (STHepNet) Kings & St George's	London	9.5%	63	63	63	79	79	79	84	84	84	90	90	90	948
16. Surrey Hepatitis Services	South	1.6%	11	11	11	13	13	13	14	14	14	15	15	15	159
17. Sussex Hepatology Network	South	1.8%	12	12	12	15	15	15	16	16	16	17	17	17	180
18. Oxford University Hospitals NHS Trust - Thames Valley	South	3.6%	24	24	24	30	30	30	32	32	32	34	34	34	360
19. Wessex Hep C ODN	South	3.2%	22	22	22	27	27	27	29	29	29	31	31	31	327
20. Bristol and Severn Hep C ODN	South	1.7%	11	11	11	14	14	14	15	15	15	16	16	16	168
21. South West Peninsula Hepatitis C ODN	South	2.3%	15	15	15	19	19	19	20	20	20	22	22	22	228
22. Kent Network via Kings	South	1.8%	12	12	12	15	15	15	16	16	16	17	17	17	180
Goal			666	666	666	834	834	834	885	885	885	952	952	952	10,011

Overcoming the cost barriers to improve access

- More competition from manufacturers
- Value based pricing and other funding structures ("Australia model"), France, Ireland
- NGO activity (activism)
- Access to generic treatments from outside EU (gathering momentum)
- Making smarter use of the treatments we have

We will be overtreating most patients despite the costs

A challenge common to many infectious diseases

Our evidence base for predicting who will be cured with shorter duration of therapy is not often good enough to change practice

Most patients will get too much HCV treatment

Duration of treatment (Weeks)

G1

What is the relationship between duration and cure?

Acute HCV (small studies)

SLAM-C Gilead 6/52 study

Recent HCV

TARGET 3D

Chronic HCV / HIV

STOP HCV-1

SLAM-C : Pilot short course in IDU

Inclusion

- Largely non-Caucasian males
- HIV negative, acute HCV active IDU
- Baseline VL mean 1.2/1.6 million
- Intervention
- A) 4/52 SOF/LDV
- B) 8/52 SOF/SIM

Basu et al APASL 2016

SLAM-C

Undetectable	Group A SOF/LDV 4/52 N=14	Group B SOF/SIM 8/52 N=15
Day 7	13/14 (92.9%)	13/15 (86.7%)
EOT	14/14 (100%)	14/15 (93.3%)
SVR12	14/14 (100%)	13/13 (100%)
Retention	13/14 (92.9%)	13/15 (86.7%)

Basu et al APASL 2016

Gilead 6/52 pilot in acute HCV/HIV

Inclusion

Male, mostly caucasian

Median baseline VL <1 million

Nelson et al BHIVA Thurs

Gilead 6/52

Nelson et al BHIVA Thurs

No resistance identified

SVR 77% reduced by LFTU and reinfection

Lower SVR that SLAM-C, possibly reflecting VL

All relapsers have baseline VL >10 million

Nelson et al BHIVA (Thurs)

Baseline stratification; Viral load thresholds for Harvoni Viral resistance testing for Graz/Elb

On treatment responses; data emerging

Treatment/Retreatment ; SYNERGY, C-SWIFT

**not achieving SVR12= failure to suppress virus during treatment; relapse after suppression either prior to or at week 12 after end of therapy.

Resistance

1. Lindenbach BD & Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature 2005;436:933-938

Treatment/Retreatment and Resistance?

- Key difference from the same challenges posed in other infections (e.g. TB, sepsis)
- Merck's C-SWIFT (ELB/GRAZ/SOF) studied durations down to 4/52

Retreatment of failures presented in AASLD – 100% SVR

- NIH/Gilead Synergy Study also down to 4/52

Retreatment success of over 90% despite high rates of NS5a emergence

Emergence of RAVs after short course Rx

Slide courtesy of Eleanor Wilson

Open for recruitment at two sites, others in set-up

All but one of the ODN in England have expressed interest

Supported by MRC, NIHR and NHS England

Wales and Scotland too

Currently navigating recruitment within NHSE restrictions on treatment

Where do we want to get to?

Where do we want to get to?

We want to be able to offer all patients >90% chance of cure with minimum duration of therapy

Leverage expertise in genetics (viral>host) and immunology to support this in routine practice

Achieve this through further studies

- To evaluate other genotypes
- To validate rules for shortened treatment with goal of >90%

Integrate with developments in informatics

UK system should be better placed than anyone to do this

Thank you

IHME, Seattle

Mohsen Naghavi Abraham Flaxman Jeff Stanaway Theo Vos GBD Collaborators

WHO

Nathan Ford Stefan Wiktor

Microhaart

Andrew Hill Bryony Wilkes

MRC Clinical Trials@UCL Sarah Walker Sarah Pett

STOP HCV Consortium

Ellie Barnes Will Irving John Mclauchlan Peter Vickerman Peter Simmonds Paul Klenerman Graham Foster

STOPHCV1 Investigators

MSF

Bhargavi Rao Philipp du Cros Jen Cohn

Imperial College/ICHT

Borja Mora-Peris Scott Mullaney Ken Legg Nur Johari

Janice Main Mark Thursz Ashley Brown Simon Taylor-Robinson Shahid Khan Maud Lemoine

Q & A

Major impact on access in US systems

Barua et al JAMA 2015

Bucking the trend of infectious diseases

	1990	2013
1	Ischemic heart disease -	Ischemic heart disease
2	Cerebrovascular disease -	Cerebrovascular disease
3	Lower respiratory infections ~	COPD
4	Diarrheal diseases 🔨	Lower respiratory infections
5	COPD -	Alzheimer disease
6	Tuberculosis 🥆	Lung cancer
7	Neonatal preterm birth	Viral hepatitis
8	Road injuries -	Road injuries
9	Lung cancer <	HIV/AIDS
10	Viral hepatitis <	Diabetes

Stanaway et al (2015)

HCV: Sofosbuvir $C_{22}H_{29}FN_{3}O_{9}P$ Molecular weight: 529 g/mol 34g per treatment course

HIV: Tenofovir disoproxil fumarate (TDF)

C₂₃H₃₄N₅O₁₄P Molecular weight: 636 g/mol \$0.52 per gram

Hill et al CID 2014

HCV DAA	Daily dose	Total dose (12wk)	Predicted cost
Ribavirin	1000mg	84g	\$21-63*
Daclatasvir	60mg	5g	\$10-30
Sofosbuvir	400mg	34g	\$68-136
Faldaprevir	120mg	10g	\$100-210
Simeprevir	150mg	13g	\$130-270

*\$25-76 for 1200mg daily dose of ribavirin

Factors considered in pricing of HCV drugs

				-	Ø	GILEAD
	Wave 1 Regimen	\$60,000	\$70,000	\$90,000	\$105,000	\$125,000
Stakeholders	Wave 1 SOF product (12 wks)	\$50,000	\$60,000	\$80,000	\$95,000	\$115,000
	Wave 2 FDC (8 wks or 12 wks?)	\$70,000	\$80,000	\$100,000	\$115,000	\$135,000
Payers	Likelihood of applying directly observed therapy due to high price	Unlikely	Possible	Possible	likely	Likely
Physicians	Likelihood of delay treatment of GT-1 TN patients due to pricing	Unlikely	Possible	Possible	likely	Likely
	Likelihood of losing some KOL endorsement/support as price too high	Very Unlikely	Unlikely	Possible	Likely	Likely
	Likelihood of getting rejection on TE patients and delay treatment for all due to misconception of restriction for SOF	Possible	Possible	Possible	Possible	Possible
Patients and Advocacy groups	Likelihood of AHF, FPC and other advocacy groups reacting negatively to price, and affecting public opinion	Likely	Likely	Very Likely	Very Likely	Very Likely
	Higher out-of-pocket costs (not offset by patient support) could drive patient choice away from SOF, especially AbbVie has great patient support programs	Very Unlikely	Very Unlikely	Unlikely	Unlikely	Possible
	Likelihood of AHF, FPC and other advocacy groups promote AbbVie products due to the relationship and lower price	Unlikely	Unlikely	Possible	Possible	Likely
Treatment Guidelines	Likelihood of AASLD develop treatment pathway to prioritize (staging) patients (per KOLs or/and professional community request)	Possible	Possible	Possible	Possible	Possible
	Likelihood of a "price mention or asterisk" in AASLD (per KOLs or/and professional community request)	Unlikely	Unlikely	Possible	Possible	Likely
Others	Likelihood of public outcry if SOF revenue exceed \$28 as government trying to control healthcare cost	Possible	Possible	Possible	Likely	Very Likely
	Likelihood of a letter from congress on SOF price	Possible	Likely	Likely	Likely	Likely
	Likelihood of a congressional hearing if SOF revenue exceed \$28	Unlikely	Unlikely	Unlikely	Unlikely	Possible

Gilead Internal from Senate Report 2015